簡易檢索 / 詳目顯示

研究生: 陳昱霖
Chen, Yu-Lin
論文名稱: 釕與鉬薄膜界面工程減緩金屬內連線電阻劇升之研究
Interface Engineering of Ruthenium and Molybdenum Films for Suppressing Resistivity Scaling of Interconnect Metallization
指導教授: 張守一
Chang, Shou-Yi
口試委員: 呂明諺
Lu, Ming-Yen
龔佩雲
Keng, Pei-Yuin
彭遠清
Peng, Yuan-Ching
簡瑞宏
Chien, Harry
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 188
中文關鍵詞: 內連線電阻率界面散射FS-MS 模型硫化
外文關鍵詞: Interconnect, Resistivity, Interface scattering, FS-MS model, Sulfurization
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於半導體元件尺寸微縮,負責傳遞元件訊號之金屬內連線電阻率隨尺寸微縮而驟升。為降低金屬內連線之電阻,釕金屬與鉬金屬被視為取代銅金屬之低電阻內連線材料。為了解尺寸微縮對於金屬內連線電阻率之影響,每一項影響因素都需要被仔細探討,如本質電阻率、電子平均自由路徑長度、電子對晶界之反射率、電子與界面散射程度。其中,釕金屬與襯墊界面發生非彈性散射對電阻率之影響仍需要被解決。因此,本實驗以不同製程方式將不同厚度之釕金屬或鉬金屬鍍在氧化物或氮化物基板上,藉此了解影響金屬電阻率隨尺寸微縮之機制。此外,採用硫粉或硫化氫氣體進行表面硫化,並在不同基板上形成硫化物層,來抑制釕金屬與襯墊界面處之非彈性散射。本實驗使用AES 、 XPS 、 Raman 、 EDS 和 TEM 對化學成分、鍵結組成和微觀結構進行分析,並使用簡化之FS-MS模型和TLM方法獲得金屬薄膜之電性。以刮痕測試量測金屬與不同襯墊之附著強度。實驗結果表明,本質電阻率受到雜質和製程缺陷影響而上升;晶界反射率由材料熔點和晶界型態決定,如晶界強度較弱或共位晶界可降低晶界反射率;界面反射散射受到鍵結強弱所影響,強鍵結增加非彈性散射。使得界面彈性散射和界面附著強度之間需要取捨。在釕金屬與襯墊層之界面間形成硫化物可以打破這種取捨,硫化層使界面發生更多彈性散射,同時又不降低界面附著度。


    Ruthenium and molybdenum are being explored as potential alternatives to copper for low-resistance (low-R) interconnects, primarily due to their resistance scaling behavior. The resistivity scaling is influenced by several factors, e.g., intrinsic resistivity, electron mean free path, grain boundary reflectivity, and interfacial specularity. Among all the factors, the diffuse scattering at the Ru/liner interfaces still needed to be minimized. Hence in this study, variable film thickness of ruthenium or molybdenum films was deposited on oxide and nitride with different processes to investigate the mechanism of the resistivity scaling. Besides, the surface sulfurization with sulfur powder or H2S gas was applied to form a sulfide layer on different substrates to inhibit the diffuse scattering at Ru/liner interfaces. The chemical composition, bonding configuration, and microstructure of scaling films were characterized by AES, XPS, Raman, EDS, and TEM. The electrical properties of scaling films were determined with the simplified FS-MS models and TLM methods. The adhesion strength of ruthenium with different liners was measured with the scratch test. The experimental results indicated that the intrinsic resistivity was increased with the impurity and process defects. The grain boundary reflectivity is determined by the melting point and the grain boundary coherency. Weak grain boundaries and coincident site lattice reduce grain boundary reflectivity. The specular scattering is correlated with bonding strength. The strong bonding causes more serious diffuse scattering. The trade-off phenomenon is found between the specular scattering and interfacial adhesion strength. The sulfide layer formed in the middle of the Ru/liner interface broke the trade-off, which make the interface more specular without sacrificing the interfacial adhesion.

    摘要 I Abstract III Acknowledgement V List of Figures XII List of Tables XXVI 1 Introduction 1 2 Literature Review 6 2-1 Resistive-capacitive delay (RC delay) 6 2-1-1 RC delay 6 2-1-2 Low-R interconnect metallization 9 2-1-3 Low-k dielectrics 12 2-2 Interconnect metallization 15 2-2-1 Conventional interconnect metallization 15 2-2-2 New low-R interconnect metallization 18 2-2-3 Other potential interconnect metallization 21 2-3 Resistivity scaling 26 2-3-1 Intrinsic resistivity 26 2-3-2 Electron mean free path 30 2-3-3 Electron scattering with impurity 32 2-3-4 Electron scattering with Grain boundary 35 2-3-5 Electron scattering at Surface/Interface 38 2-3-6 Models for resistivity scaling 40 2-4 Microstructure engineering 43 2-4-1 Grain growth 43 2-4-2 Grain boundary coherency 45 2-5 Interface engineering 47 2-5-1 Enhance specular scattering at the interface 47 2-5-2 2D materials as the liner 51 2-5-3 Surface treatments 54 2-6 Research purposes 57 3 Methods 59 3-1 Research framework 59 3-2 Substrates preparation 60 3-3 Surface sulfurization 62 3-4 Metal film deposition 65 3-5 Thermal annealing 68 3-6 Chemical characterizations 70 3-7 Microstructure characterizations 72 3-8 Electrical properties analysis 74 3-9 Interfacial adhesion strength test 77 4 Results and Discussion 79 4-1 Mechanism of resistivity scaling on Ru and Mo 79 4-1-1 Grain growth of the Ru and Mo films 79 4-1-2 Electrical properties of the Ru and Mo films 85 4-1-3 Chemical characterization of the Ru and Mo films 91 4-1-4 Microstructure characterization of the Ru and Mo films 104 4-1-5 Interfacial adhesion of the Ru and Mo films 108 4-2 Surface sulfurization with sulfur powder 113 4-2-1 Process optimization of surface sulfurization (S) 113 4-2-2 Chemical characterization of surface sulfurization (S) 117 4-2-3 Microstructure characterization of surface sulfurization (S) 128 4-2-4 Chemical characterization and Microstructure characterization of TN/TS/Ru films 130 4-2-5 Electrical properties of the TN/TS/Ru and Ru/RS/Mo films 132 4-2-6 Interfacial adhesion of the TN/TS/Ru interfaces 137 4-3 Surface sulfurization with H2S gas 139 4-3-1 Process optimization of surface sulfurization (H2S) 139 4-3-2 Chemical characterization and microstructure characterization of TO/TS and TM/TS films 142 4-2-3 Chemical characterization and microstructure characterization of TO/TS/Ru and TN/TS/Ru films 152 4-2-4 Electrical properties of the TM(TS)Ru and TO(TS)Ru films 156 4-2-5 Interfacial adhesion of the TM/(TS)Ru and TO(TS)Ru interfaces 160 5 Conclusions 164 6 References 166 Publication List 186

    [1] A.A. Vyas, C. Zhou, C.Y. Yang, On-chip interconnect conductor materials for end-of-roadmap technology nodes, IEEE Transactions on Nanotechnology, 17 (2016) 4-10.
    [2] J.H. Moon, E. Jeong, S. Kim, T. Kim, E. Oh, K. Lee, H. Han, Y.K. Kim, Materials Quest for Advanced Interconnect Metallization in Integrated Circuits, Advanced Science, (2023) 2207321.
    [3] D. Gall, J.J. Cha, Z. Chen, H.-J. Han, C. Hinkle, J.A. Robinson, R. Sundararaman, R. Torsi, Materials for interconnects, MRS Bulletin, (2021) 1-8.
    [4] J. Plombon, E. Andideh, V.M. Dubin, J. Maiz, Influence of phonon, geometry, impurity, and grain size on copper line resistivity, Applied physics letters, 89 (2006) 113124.
    [5] K. Fuchs, The conductivity of thin metallic films according to the electron theory of metals, in: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, (1938) 100-108.
    [6] E.H. Sondheimer, The mean free path of electrons in metals, Advances in physics, 50 (2001) 499-537.
    [7] A. Mayadas, M. Shatzkes, J. Janak, Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces, Applied Physics Letters, 14 (1969) 345-347.
    [8] A. Mayadas, M. Shatzkes, Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces, Physical review B, 1 (1970) 1382.
    [9] W. Zhang, S.H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, Influence of the electron mean free path on the resistivity of thin metal films, Microelectronic engineering, 76 (2004) 146-152.
    [10] C.L. Lo, M. Catalano, A. Khosravi, W. Ge, Y. Ji, D.Y. Zemlyanov, L. Wang, R. Addou, Y. Liu, R.M. Wallace, Enhancing interconnect reliability and performance by converting tantalum to 2D layered tantalum sulfide at low temperature, Advanced Materials, 31 (2019) 1902397.
    [11] C. Adelmann, K. Sankaran, S. Dutta, A. Gupta, S. Kundu, G. Jamieson, K. Moors, N. Pinna, I. Ciofi, S. Van Eishocht, Alternative metals: from ab initio screening to calibrated narrow line models, in: 2018 IEEE International Interconnect Technology Conference (IITC), IEEE, (2018) 154-156.
    [12] D. Gall, Electron mean free path in elemental metals, Journal of applied physics, 119 (2016) 085101.
    [13] S. Dutta, K. Moors, M. Vandemaele, C. Adelmann, Finite size effects in highly scaled ruthenium interconnects, IEEE Electron Device Letters, 39 (2018) 268-271.
    [14] V. Founta, J.-P. Soulié, K. Sankaran, K. Vanstreels, K. Opsomer, P. Morin, P. Lagrain, A. Franquet, D. Vanhaeren, T. Conard, Properties of ultrathin molybdenum films for interconnect applications, Materialia, 24 (2022) 101511.
    [15] X. Zhang, H. Huang, R. Patlolla, W. Wang, F.W. Mont, J. Li, C.-K. Hu, E.G. Liniger, P.S. McLaughlin, C. Labelle, Ruthenium interconnect resistivity and reliability at 48 nm pitch, in: 2016 IEEE international interconnect technology conference/advanced metallization conference (IITC/AMC), IEEE, (2016) 31-33.
    [16] R.A. Matula, Electrical resistivity of copper, gold, palladium, and silver, Journal of Physical and Chemical Reference Data, 8 (1979) 1147-1298.
    [17] D. Josell, S.H. Brongersma, Z. Tőkei, Size-dependent resistivity in nanoscale interconnects, Annual Review of Materials Research, 39 (2009) 231-254.
    [18] Y. Zhu, X. Lang, W. Zheng, Q. Jiang, Electron scattering and electrical conductance in polycrystalline metallic films and wires: impact of grain boundary scattering related to melting point, ACS nano, 4 (2010) 3781-3788.
    [19] D. Gall, The search for the most conductive metal for narrow interconnect lines, Journal of Applied Physics, 127 (2020) 050901.
    [20] P. Zheng, T. Zhou, D. Gall, Electron channeling in TiO2 coated Cu layers, Semiconductor Science and Technology, 31 (2016) 055005.
    [21] S.J. Yoon, S. Lee, T.I. Lee, A. Yoon, B.J. Cho, Large grain ruthenium for alternative interconnects, IEEE Electron Device Letters, 40 (2018) 91-94.
    [22] H. Bishara, S. Lee, T. Brink, M. Ghidelli, G. Dehm, Understanding grain boundary electrical resistivity in Cu: the effect of boundary structure, ACS nano, 15 (2021) 16607-16615.
    [23] T. Zhou, A. Jog, D. Gall, First-principles prediction of electron grain boundary scattering in fcc metals, Applied Physics Letters, 120 (2022) 241603.
    [24] F. Zahid, Y. Ke, D. Gall, H. Guo, Resistivity of thin Cu films coated with Ta, Ti, Ru, Al, and Pd barrier layers from first principles, Physical Review B, 81 (2010) 045406.
    [25] N.A. Lanzillo, D.C. Edelstein, Reliability and resistance projections for rhodium and iridium interconnects from first-principles, Journal of Vacuum Science & Technology B, 40 (2022) 052801.
    [26] K. Croes, C. Adelmann, C.J. Wilson, H. Zahedmanesh, O.V. Pedreira, C. Wu, A. Leśniewska, H. Oprins, S. Beyne, I. Ciofi, Interconnect metals beyond copper: Reliability challenges and opportunities, in: 2018 IEEE International Electron Devices Meeting (IEDM), IEEE, (2018) 5.3. 1-5.3. 4.
    [27] C. Hu, Y. Zhang, Z. Chen, Q. Zhang, J. Zhu, S. Hu, Y. Ke, Size effect of resistivity due to surface roughness scattering in alternative interconnect metals: Cu, Co, Ru, and Mo, Physical Review B, 107 (2023) 195422.
    [28] T. Shen, D. Valencia, Q. Wang, K.-C. Wang, M. Povolotskyi, M.J. Kim, G. Klimeck, Z. Chen, J. Appenzeller, MoS2 for enhanced electrical performance of ultrathin copper films, ACS applied materials & interfaces, 11 (2019) 28345-28351.
    [29] S. El Kazzi, Y.W. Lum, I. Erofeev, S. Vajandar, S. Pasko, S. Krotkus, B. Conran, O. Whear, T. Osipowicz, U. Mirsaidov, Assessing Ultrathin Wafer-Scale WS2 as a Diffusion Barrier for Cu Interconnects, ACS Applied Electronic Materials, 5 (2023) 5074-5081.
    [30] H.C. Lee, M. Jo, H. Lim, M.S. Yoo, E. Lee, N.N. Nguyen, S.Y. Han, K. Cho, Toward near-bulk resistivity of Cu for next-generation nano-interconnects: Graphene-coated Cu, Carbon, 149 (2019) 656-663.
    [31] Y.-W. Liu, D.-J. Zhang, P.-C. Tsai, C.-T. Chiang, W.-C. Tu, S.-Y. Lin, Nanometer-thick copper films with low resistivity grown on 2D material surfaces, Scientific reports, 12 (2022) 1823.
    [32] C.-L. Lo, B.A. Helfrecht, Y. He, D.M. Guzman, N. Onofrio, S. Zhang, D. Weinstein, A. Strachan, Z. Chen, Opportunities and challenges of 2D materials in back-end-of-line interconnect scaling, Journal of Applied Physics, 128 (2020) 080903.
    [33] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Materials, 1 (2013) 011002.
    [34] Y.-L. Chen, K.-Y. Hsiao, M.-Y. Lu, P.Y. Keng, S.-Y. Chang, Surface sulfurization of liner and ruthenium metallization to reduce interface scattering for Low-Resistance interconnect, Applied Surface Science, 652 (2024) 159318.
    [35] A. Arafat, M.S. Islam, N. Ferdous, A.J. Islam, M.M.H. Sarkar, C. Stampfl, J. Park, Atomistic reaction mechanism of CVD grown MoS2 through MoO3 and H2S precursors, Scientific Reports, 12 (2022) 16085.
    [36] C.-M. Hyun, J.-H. Choi, S.W. Lee, J.H. Park, K.-T. Lee, J.-H. Ahn, Synthesis mechanism of MoS2 layered crystals by chemical vapor deposition using MoO3 and sulfur powders, Journal of Alloys and Compounds, 765 (2018) 380-384.
    [37] D. Dumcenco, D. Ovchinnikov, O.L. Sanchez, P. Gillet, D.T. Alexander, S. Lazar, A. Radenovic, A. Kis, Large-area MoS2 grown using H2S as the sulphur source, 2D Materials, 2 (2015) 044005.
    [38] J. Park, J.-G. Song, T. Choi, S. Sim, H. Choi, S.W. Han, S.-H. Kim, H. Kim, Comparison of hydrogen sulfide gas and sulfur powder for synthesis of molybdenum disulfide nanosheets, Current Applied Physics, 16 (2016) 691-695.
    [39] S. Muthukumar, C.D. Hill, S. Ford, W. Worwag, T. Dambrauskas, P.C. Challela, T.S. Dory, N.M. Patel, E.L. Ramsay, D.S. Chau, High-density compliant die-package interconnects, in: 56th Electronic Components and Technology Conference 2006, IEEE, (2006) 6.
    [40] D. Shamiryan, T. Abell, F. Iacopi, K. Maex, Low-k dielectric materials, Materials today, 7 (2004) 34-39.
    [41] M. Tada, N. Inoue, Y. Hayashi, Performance Modeling of Low-k/Cu Interconnects for 32-nm-Node and Beyond, IEEE transactions on electron devices, 56 (2009) 1852-1861.
    [42] D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, Full copper wiring in a sub-0.25/spl mu/m CMOS ULSI technology, in: International Electron Devices Meeting. IEDM Technical Digest, IEEE, (1997) 773-776.
    [43] P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, H. Deligianni, Damascene copper electroplating for chip interconnections, IBM Journal of Research and Development, 42 (1998) 567-574.
    [44] S.I. Association, National Technology Roadmap for Semiconductors, (1997).
    [45] Y.-S. Song, C.-Y. Chu, J. Jeon, U.-H. Kwon, K.-H. Lee, S. Kim, Accurate BEOL statistical modeling methodology with circuit-level multi-layer process variations, in: 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), IEEE, (2017) 265-268.
    [46] R. Brain, Interconnect scaling: Challenges and opportunities, in: 2016 IEEE International Electron Devices Meeting (IEDM), IEEE, (2016) 9.3. 1-9.3. 4.
    [47] M. Ieong, V. Narayanan, D. Singh, A. Topol, V. Chan, Z. Ren, Transistor scaling with novel materials, Materials today, 9 (2006) 26-31.
    [48] S. Smith, K. Aouadi, J. Collins, E. van der Vegt, M.-T. Basso, M. Juhel, S. Pokrant, Low resistivity tungsten for contact metallization, Microelectronic engineering, 82 (2005) 261-265.
    [49] P. Zheng, D. Gall, The anisotropic size effect of the electrical resistivity of metal thin films: Tungsten, Journal of Applied Physics, 122 (2017) 135301
    [50] K. Sankaran, S. Clima, M. Mees, G. Pourtois, Exploring alternative metals to Cu and W for interconnects applications using automated first-principles simulations, ECS Journal of Solid State Science and Technology, 4 (2014) N3127.
    [51] I. Ciofi, P.J. Roussel, R. Baert, A. Contino, A. Gupta, K. Croes, C.J. Wilson, D. Mocuta, Z. Tőkei, RC benefits of advanced metallization options, IEEE Transactions on Electron Devices, 66 (2019) 2339-2345.
    [52] M.H. van der Veen, A. Delabie, N. Heylen, O. Varela Pedreira, N. Jourdan, S. Park, H. Struyf, Z. Tokei, Metallizations for Advanced Interconnects and Challenges for Future Nodes, in: Electrochemical Society Meeting Abstracts 242, The Electrochemical Society, Inc., (2022) 809-809.
    [53] I. Ciofi, P.J. Roussel, Y. Saad, V. Moroz, C.-Y. Hu, R. Baert, K. Croes, A. Contino, K. Vandersmissen, W. Gao, Modeling of via resistance for advanced technology nodes, IEEE transactions on Electron Devices, 64 (2017) 2306-2313.
    [54] N.A. Lanzillo, K. Motoyama, H. Huang, R.R. Robison, T. Spooner, Via resistance and reliability trends in copper interconnects with ultra-scaled barrier layers, Applied Physics Letters, 116 (2020) 164103.
    [55] C.-C. Yang, T. Spooner, P. McLaughlin, R. Quon, T. Standaert, D. Edelstein, Via resistance reduction in advanced copper interconnects, IEEE Electron Device Letters, 38 (2016) 115-118.
    [56] J.W. Ward, J. Nichols, T.B. Stachowiak, Q. Ngo, E.J. Egerton, Reduction of CNT interconnect resistance for the replacement of Cu for future technology nodes, IEEE transactions on nanotechnology, 11 (2011) 56-62.
    [57] K. Sankaran, K. Moors, Z. Tőkei, C. Adelmann, G. Pourtois, Ab initio screening of metallic MAX ceramics for advanced interconnect applications, Physical review materials, 5 (2021) 056002.
    [58] J. Koike, T. Kuge, L. Chen, M. Yahagi, Intermetallic compounds for interconnect metal beyond 3 nm node, in: 2021 IEEE International Interconnect Technology Conference (IITC), IEEE (2021) 1-3.
    [59] C. Zhang, Z. Ni, J. Zhang, X. Yuan, Y. Liu, Y. Zou, Z. Liao, Y. Du, A. Narayan, H. Zhang, Ultrahigh conductivity in Weyl semimetal NbAs nanobelts, Nature materials, 18 (2019) 482-488.
    [60] S.M. Han, E.S. Aydil, Reasons for lower dielectric constant of fluorinated SiO 2 films, Journal of applied Physics, 83 (1998) 2172-2178.
    [61] Y.-M. Chang, W.-Y. Chang, J.-F. Huang, J. Leu, Y.-L. Cheng, Effect of thermal treatment on physical, electrical properties and reliability of porogen-containing and porogen-free ultralow-k dielectrics, Thin Solid Films, 528 (2013) 67-71.
    [62] D. Shamiryan, M. Baklanov, S. Vanhaelemeersch, K. Maex, Comparative study of SiOCH low-k films with varied porosity interacting with etching and cleaning plasma, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 20 (2002) 1923-1928.
    [63] K. Fischer, M. Agostinelli, C. Allen, D. Bahr, M. Bost, P. Charvat, V. Chikarmane, Q. Fu, C. Ganpule, M. Haran, Low-k interconnect stack with multi-layer air gap and tri-metal-insulator-metal capacitors for 14nm high volume manufacturing, in: 2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM), IEEE, (2015) 5-8.
    [64] G. Schnable, R. Keen, Aluminum metallization—Advantages and limitations for integrated circuit applications, Proceedings of the IEEE, 57 (1969) 1570-1580.
    [65] R.H. Havemann, J.A. Hutchby, High-performance interconnects: An integration overview, Proceedings of the IEEE, 89 (2001) 586-601.
    [66] R. Bernasconi, L. Magagnin, Ruthenium as diffusion barrier layer in electronic interconnects: current literature with a focus on electrochemical deposition methods, Journal of The Electrochemical Society, 166 (2018) D3219.
    [67] C.-L. Lo, M. Catalano, K.K. Smithe, L. Wang, S. Zhang, E. Pop, M.J. Kim, Z. Chen, Studies of two-dimensional h-BN and MoS2 for potential diffusion barrier application in copper interconnect technology, npj 2D Materials and Applications, 1 (2017) 42.
    [68] O.V. Pedreira, K. Croes, A. Leśniewska, C. Wu, M. van Der Veen, J. De Messemaeker, K. Vandersmissen, N. Jourdan, L.G. Wen, C. Adelmann, Reliability study on cobalt and ruthenium as alternative metals for advanced interconnects, in: 2017 ieee international reliability physics symposium (irps), IEEE, (2017) 6B-2.1-6B-2.8.
    [69] Y. Hu, P. Conlin, Y. Lee, D. Kim, K. Cho, van der Waals 2D metallic materials for low-resistivity interconnects, Journal of Materials Chemistry C, 10 (2022) 5627-5635.
    [70] J.-P. Soulié, Z. Tókei, N. Heylen, C. Adelmann, Reduced resistivity of NiAl by backthinning for advanced interconnect metallization, in: 2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM), IEEE, (2023) 1-3.
    [71] L. Chen, S. Kumar, M. Yahagi, D. Ando, Y. Sutou, D. Gall, R. Sundararaman, J. Koike, Interdiffusion reliability and resistivity scaling of intermetallic compounds as advanced interconnect materials, Journal of Applied Physics, 129 (2021) 035301.
    [72] B. Van Troeye, K. Sankaran, Z. Tokei, C. Adelmann, G. Pourtois, First-principles investigation of thickness-dependent electrical resistivity for low-dimensional interconnects, Physical Review B, 108 (2023) 125117.
    [73] S. Kumar, C. Multunas, B. Defay, D. Gall, R. Sundararaman, Ultralow electron-surface scattering in nanoscale metals leveraging Fermi-surface anisotropy, Physical Review Materials, 6 (2022) 085002.
    [74] J.-P. Soulié, K. Sankaran, V. Founta, K. Opsomer, C. Detavernier, J. Van de Vondel, G. Pourtois, Z. Tőkei, J. Swerts, C. Adelmann, Al3Sc thin films for advanced interconnect applications, Microelectronic Engineering, (2024) 112141.
    [75] H.J. Han, S. Kumar, G. Jin, X. Ji, J.L. Hart, D.J. Hynek, Q.P. Sam, V. Hasse, C. Felser, D.G. Cahill, Topological metal MoP nanowire for interconnect, Advanced Materials, 35 (2023) 2208965.
    [76] C. Wei, N. Antolin, O.D. Restrepo, W. Windl, J.-C. Zhao, A general model for thermal and electrical conductivity of binary metallic systems, Acta Materialia, 126 (2017) 272-279.
    [77] J. Banhart, G. Czycholl, Electrical conductivity of long-range–ordered alloys, Europhysics Letters, 58 (2002) 264.
    [78] E.C. Ko, J.Y. Kim, H. Rhee, K.M. Kim, J.H. Han, Low-resistivity ruthenium metal thin films grown via atomic layer deposition using dicarbonyl-bis (5-methyl-2, 4-hexanediketonato) ruthenium (II) and oxygen, Materials Science in Semiconductor Processing, 156 (2023) 107258.
    [79] A. Jog, T. Zhou, D. Gall, Resistivity size effect in epitaxial Rh (001) and Rh (111) layers, IEEE Transactions on Electron Devices, 68 (2020) 257-263.
    [80] K. Nagashio, A. Toriumi, Density-of-states limited contact resistance in graphene field-effect transistors, Japanese Journal of Applied Physics, 50 (2011) 070108.
    [81] J. Zhang, X. Zhu, K. Zhu, J. Shen, Y. Xu, D. Chen, P. Wang, Adsorption of NO2 and NH3 on single-atom (Co, Pd, Pt)-decorated 2H-MoS2 monolayer: A DFT study, Results in Physics, 51 (2023) 106694.
    [82] S.-T. Zhang, C.-M. Li, H. Yan, M. Wei, D.G. Evans, X. Duan, Density functional theory study on the metal–support interaction between Ru cluster and anatase TiO2 (101) surface, The Journal of Physical Chemistry C, 118 (2014) 3514-3522.
    [83] M. Son, J. Jang, Y. Lee, J. Nam, J.Y. Hwang, I.S. Kim, B.H. Lee, M.-H. Ham, S.-S. Chee, Copper-graphene heterostructure for back-end-of-line compatible high-performance interconnects, npj 2D Materials and Applications, 5 (2021) 41.
    [84] N.A. Lanzillo, O.D. Restrepo, P.S. Bhosale, E. Cruz-Silva, C.-C. Yang, B. Youp Kim, T. Spooner, T. Standaert, C. Child, G. Bonilla, Electron scattering at interfaces in nano-scale vertical interconnects: A combined experimental and ab initio study, Applied Physics Letters, 112 (2018) 163107.
    [85] J. Chawla, F. Zahid, H. Guo, D. Gall, Effect of O2 adsorption on electron scattering at Cu (001) surfaces, Applied Physics Letters, 97 (2010) 132106.
    [86] E. Milosevic, D. Gall, Copper interconnects: Surface state engineering to facilitate specular electron scattering, IEEE Transactions on Electron Devices, 66 (2019) 2692-2698.
    [87] P.P. Shinde, S.P. Adiga, S. Pandian, K.S. Mayya, H.-J. Shin, S. Park, Effect of encapsulation on electronic transport properties of nanoscale Cu (111) films, Scientific Reports, 9 (2019) 3488.
    [88] I. Song, C. Park, M. Hong, J. Baik, H.J. Shin, H.C. Choi, Patternable large‐scale molybdenium disulfide atomic layers grown by gold‐assisted chemical vapor deposition, Angewandte Chemie, 126 (2014) 1290-1293.
    [89] J. Wang, L. Chen, W. Lu, M. Zeng, L. Tan, F. Ren, C. Jiang, L. Fu, Direct growth of molybdenum disulfide on arbitrary insulating surfaces by chemical vapor deposition, RSC advances, 5 (2014) 4364-4367.
    [90] I. Endler, A. Leonhardt, U. König, H. Van den Berg, W. Pitschke, V. Sottke, Chemical vapour deposition of MoS2 coatings using the precursors MoCl5 and H2S, Surface and Coatings Technology, 120 (1999) 482-488.
    [91] Y. Lee, J. Lee, H. Bark, I.-K. Oh, G.H. Ryu, Z. Lee, H. Kim, J.H. Cho, J.-H. Ahn, C. Lee, Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor, Nanoscale, 6 (2014) 2821-2826.
    [92] L. Ling, R. Zhang, P. Han, B. Wang, DFT study on the sulfurization mechanism during the desulfurization of H2S on the ZnO desulfurizer, Fuel processing technology, 106 (2013) 222-230.
    [93] S. Guo, G. Gregory, A.M. Gabor, W.V. Schoenfeld, K.O. Davis, Detailed investigation of TLM contact resistance measurements on crystalline silicon solar cells, Solar Energy, 151 (2017) 163-172.
    [94] S.-Y. Chang, S.-Y. Lin, Y.-C. Huang, C.-L. Wu, Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr) Nx multi-component coatings, Surface and Coatings Technology, 204 (2010) 3307-3314.
    [95] J. Yun, E. Jeong, G. Zhao, S.-G. Lee, S.M. Yu, J.-S. Bae, S.Z. Han, G.-H. Lee, Y. Ikoma, E.-A. Choi, Unconventional thickness dependence of electrical resistivity of silver film electrodes in substoichiometric oxidation states, Acta Materialia, 265 (2024) 119637.
    [96] J. Balcerzak, W. Redzynia, J. Tyczkowski, In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films, Applied Surface Science, 426 (2017) 852-855.
    [97] H. Chen, X. Ai, W. Liu, Z. Xie, W. Feng, W. Chen, X. Zou, Promoting subordinate, efficient ruthenium sites with interstitial silicon for Pt‐like electrocatalytic activity, Angewandte Chemie, 131 (2019) 11531-11535.
    [98] A. Zanatta, I. Chambouleyron, Local electronegativity and chemical shift in Si and Ge based molecules and alloys, Solid state communications, 95 (1995) 207-210.
    [99] I.G. Aviziotis, T. Duguet, C. Vahlas, A.G. Boudouvis, Combined macro/nanoscale investigation of the chemical vapor deposition of Fe from Fe (CO) 5, Advanced Materials Interfaces, 4 (2017) 1601185.
    [100] H. Liu, L. Liu, F. Ye, Z. Zhang, Y. Zhou, Microstructure and mechanical properties of the spark plasma sintered TaC/SiC composites: Effects of sintering temperatures, Journal of the European Ceramic Society, 32 (2012) 3617-3625.
    [101] S. Achra, X. Wu, V. Trepalin, T. Nuytten, J. Ludwig, V. Afanas' ev, S. Brems, B. Sorée, Z. Tokei, M. Heyns, Metal induced charge transfer doping in graphene-ruthenium hybrid interconnects, Carbon, 183 (2021) 999-1011.
    [102] P.J. Rosy, M.J.S. Jas, K. Santhanalakshmi, M. Murugan, P. Manivannan, Expert development of Hetero structured TiS2–TiO2 nanocomposites and evaluation of electron acceptors effect on the photo catalytic degradation of organic Pollutants under UV-light, Journal of Materials Science: Materials in Electronics, 32 (2021) 4053-4066.
    [103] C. Weng, Y. Luo, B. Wang, J. Shi, L. Gao, Z. Cao, G. Duan, Layer-dependent SERS enhancement of TiS 2 prepared by simple electrochemical intercalation, Journal of Materials Chemistry C, 8 (2020) 14138-14145.

    QR CODE