簡易檢索 / 詳目顯示

研究生: 黃于禎
Huang, Yu-chen
論文名稱: 蛇毒心臟毒素對心肌細胞溶酶體的作用研究
Effect of Cobra Cardiotoxin A2 and A4 on the Lysosome Integrity of H9C2
指導教授: 吳文桂
Wu, Wen-guey
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 35
中文關鍵詞: 蛇毒
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣眼鏡蛇毒蛋白裡其中一個主要的成分為心臟毒素,各個心臟毒蛋白(cardiotoxin)之間為一個結構相似的β-板狀(β-sheet polypeptides)且帶有正電荷的蛋白,使被咬傷者的心肌收縮而停止跳動,但是對於其進入細胞後的詳細作用並不是很清楚。在利用共軛焦顯微鏡觀察下,我們可以發現心臟毒素A2、A4會明顯的累積於溶酶體上。而實驗室之前的研究已經指出心臟毒素A2、A4進入細胞的方式是藉由巨胞飲作用(Macropinocytosis)以及胞膜窖引導的內吞作用(Caveolae-mediated endpcytosis)。且脂筏在過去的研究中被認為是調控細胞進行內吞作用的重要角色,因此需要進一步探討它對心臟毒素的內吞作用所造成的影響。
    在實驗中我們發現膽固醇能夠調控心臟毒素A2、A4進入細胞,影響心臟毒素A2、A4進入細胞的量和進入細胞的位置。在增加細胞膜上的膽固醇含量後可以觀察到心臟毒素A2、A4聚集在溶酶體的程度相較於正常狀況下會有程度上的增加,且心臟毒素A2、A4能夠進一步的影響溶酶體的pH值。從觀察到的實驗結果可以推測溶酶體可能是心臟毒素A2、A4在細胞中的攻擊對象,進而導致心肌細胞的死亡。


    Cardiotoxins (CTXs), a major component of snake venom from Taiwan cobra Naja atra, are structurally homologues beta-sheet basic polypeptides that are known to manifest cytotoxicity in cells, but the mechanism of their action remains obsecure. Using the confocal imaging technique, we show that cardiotoxins can get into H9C2 cells and accumulate markedly in lysosomes. And the previous study has shown that CTX A2 and CTXA4 internalize through dynamin-dependent macropinocytosis and it has proved that they can also internalize through clathrin mediated pathway. However, lipid rafts are implicated in endocytosis. So membrane lipid raft is needed to further investigate if it affects cargo internalization.
    In this study, we found that cholesterol incorporation can enhance the internalization of CTX A2 and CTXA4. And we observe that CTXA2 and CTXA4 can target to lysosome at higher level compared to normal and cholesterol deplete condition. On the basis of the results obtained, we propose that lysosomes may be the primary target of CTX A2 and CTXA4. CTXs may not degraded in lysosomes, it has possibility to make lysosome damage to release lysosomal extracts. So we try to test the lysosomal integrity and check the relative effects of CTXs on lysosmes of living cultured cells. And these data indicate that CTXA2 and CTXA4 may inhibits the acidification of lysosome. This may provide us some possibility of how CTXs make H9C2 cells toxicity.

    Table contents……………………………………………….………………….............I Abbreviation……………………………………………………………………...…………….II Chapter 1 Introduction....…………………………………………………………..1 1-1 Mechanisms of Endocytosis………………………………….....………...…….…....1 1-2 Cardiotoxins……………………..…….…………………………….………………...4 1-3 Cholesterol and lipid raft……….…………………………………………………..7 1-4 Cardiotoxins internalization pathway…….………………………..………………9 1-5 Lysosome and Cell death………………………………………………..…..........11 Chapter 2 Materials and Method……………………………………...………….13 2-1 Materials…………………………...……………………..…………………….….13 2-2 Cell & Cell cultures…………………...…………………………………………13 2-3 Cardiotoxin A2 and A4 localization assay……….….…………………………13 2-4 Estimation of lysosomal intergrity using AO staining…………………………14 2-5 Cholesterol level effect on CTXA2 and CTXA4 internalization..……...………14 2-6 Immunofluorescence detection of cathepsin D…....……….………………….15 2-7 Measurement of lysosomal pH…………………………………………………..15 Chapter3 Results & Discussion………………………………………..……….……..17 3-1 Localization of CTXA2 and CTXA4 in H9C2 cells………..….…..……..………..17 3-2 CTXA2 and CTXA4 affect on lysosomal integrity…………………..…………..…....17 3-3 The Cholesterol level effect on CTXA2’s and CTXA4’s colocalization to lysosome 18 3-4 CTXA2 and CTXA4 do not trigger cathepsin D translocation from lysosome………18 3-5 CTXA2 and CTXA4 affect on lysosomal pH…………………….…………………….19 Reference…………………………………………………………………….………..31 Appendix……………………………………………………………………………….35

    Boya P., and G. Kroemer. 2008. Lysosomal membrane permeabilization in cell death.
    Oncogene. 27, 6434–6451
    Brown, D. A., and J.K. Rose. 1992. Sorting of GPI-anchored proteins to
    glycolipid-enriched membrane subdomains during transport to the apical cell
    surface. Cell 68, 533-544.
    Brown, D.A., and E. London. 1997. Structure of detergent-resistant membrane
    domains: does phase separation occur in biological membranes? Biochem
    Biophys Res Commun. 240:1-7.
    Brunk, U.T., H.Dalen, K.Roberg, and H.B. Hellquist. 1997. Photo-Oxidative
    Disruption of Lysosomal Membranes Causes Apoptosis of Cultured Human
    Fibroblasts. Free Radic Biol Med. 23(4):616-26.
    Chien, K.Y., C.M. Chiang, Y.C. Hseu, A.A. Vyas, G.S. Rule, and W. Wu. 1994. Two
    distinct types of cardiotoxin as revealed by the structure and activity
    relationship of their interaction with zwitterionic phospholipid dispersions. J
    Biol Chem. 269:14473-83.
    Cirman T, Oresic K, Droga-Mazovec G, Turk V, Reed JC, Myers RM, Salvesen GS
    and Turk B. 2004. Selective disruption of lysosomes in HeLa cells triggers
    apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal
    cathepsins. J. Biol. Chem., 279, 3578–3587.
    Conner, S.D., and S.L. Schmid. 2003. Regulated portals of entry into the cell. Nature.
    422:37-44.
    De Duve C., and Wattiaux R. 1966. Functions of lysosomes. Annu Rev Physiol.
    28:435–492.
    Decker RS., Poole AR and Wildenthal K. 1980. Distribution of lysosomal cathepsin D
    in normal, ischemic, and starved rabbit cardiac myocytes. Circ Res
    46:485–494
    Doherty, G.J., and H.T. McMahon. 2009. Mechanisms of Endocytosis. Annu Rev
    Biochem. 78: 857-902.
    Endo, T., and Tamiya, N. 1991. Structure-function relationship of postsynaptic
    neurotoxins from snake venoms. Snake Toxins (Harvey, A. L., ed.), Pergamon
    Press, New York, pp. 165–222.
    Fell H.B., and Dingle J.T. 1963. Studies on the mode of action of excess of vitamin A.
    6. Lysosomal protease and the degradation of cartilage matrix. Biochem. J
    87:403–408
    Forouhar. F., W.N. Huang, J.H. Liu, K.Y. Chien, W.G. Wu, and C.D. Hsiao. 2003.
    Structural basis of membrane-induced cardiotoxin A3 oligomerization. J Biol
    - 32 -
    Chem. 278:21980-8.
    Futerman A.H., and G. van Meer. 2004. The cell biology of lysosomal storage
    disorders. Nat Rev Mol Cell Biol 5: 554-565.
    G. van Meer., 1989. Lipid traffic in animal cells. Annu. Rev. Cell Biol. 5, pp. 247–275.
    Guskey LE., Smith PC and Wolff DA. 1970. Patterns of cytopathology and lysosomal
    enzyme release in poliovirus-infected HEp-2 cells treated with either
    2-(alpha-hydroxybenzyl)-benzimidazole or guanidine HCl. J Gen Virol
    6:151–161
    H. Erdal., M. Berndtsson, J. Castro, U. Brunk, M.C. Shoshan and S. Linder. 2005.
    Induction of lysosomal membrane permeabilization by compounds that
    activate p53-independent apoptosis, Proc. Natl. Acad. Sci. U.S.A. 102. pp.
    192–197.
    Hatherill JR., Stephens KE, Nagao K, Ishizaka A, Wilmarth L, Wang JC, Deinhart T,
    Larrick JW and Raffin TA. 1989. Effects of anti- C5a antibodies on human
    polymorphonuclear leukocyte function: Chemotaxis, chemiluminescence, and
    lysosomal enzyme release. J Biol Response Mod 8:614–624
    Huang, W.N., S.C. Sue, D.S. Wang, P.L. Wu, and W.G. Wu. 2003. Peripheral binding
    mode and penetration depth of cobra cardiotoxin on phospholipid membranes
    as studied by a combined FTIR and computer simulation approach.
    Biochemistry. 42:7457-66.
    Jovic,M., M.Sharma, J.Rahajeng, and S.Caplan. 2010. The early endosome: a busy
    sorting station for proteins at the crossroads. Histol Histopathol. 25(1):
    99–112.
    Katagiri, Y. U., Mori, T., Nakajima, H., Katagiri, C., Taguchi, T., Takeda, T.,
    Kiyokawa, N. and Fujimoto, J. 1999. Activation of Src family kinase yes
    induced by Shiga toxin binding to globotriaosyl ceramide (Gb3/CD77) in low
    density, detergent-insoluble microdomains. J. Biol. Chem. 274, 35278-35282.
    Lambeau G., and M. Lazdunski. 1999. Receptors for a growing family of secreted
    phospholipases A2. Trends Pharmacol. Sci. 20, pp. 162–170.
    Laszlo L., Lowe J, Self T, Kenward N, Landon M, McBride T, Farquhar C,
    McConnell I, Brown J, Hope J and Mayer RJ. 1992. Lysosomes as key
    organelles in the pathogenesis of prion encephalopathies. J Pathol
    166:333–341
    Lee, S.C., H.H. Guan, C.H. Wang, W.N. Huang, S.C. Tjong, C.J. Chen, and W.G. Wu.
    2005. Structural basis of citrate-dependent and heparan sulfate-mediated cell
    surface retention of cobra cardiotoxin A3. J Biol Chem. 280:9567-77.
    Mercer,J., M.Schelhaas, and A.Helenius. 2010. Virus Entry by Endocytosis. Annu Rev
    Biochem. 79: 803-833.
    - 33 -
    Nabi, I.R., and P.U. Le. 2003. Caveolae/raft-dependent endocytosis. J Cell Biol.
    161:673-7
    Nakashima S., Y. Hiraku, S. Tada-Oikawa, T. Hishita, EC. Gabazza, S. Tamaki, I.
    Imoto, Y. Adachi and S. Kawanishi. 2003. Vacuolar H+-ATPase inhibitor
    induces apoptosis via lysosomal dysfunction in the human gastric cancer cell
    line MKN-1. J Biochem. 134:359–364.
    Nixon RA., Cataldo AM, Paskevich PA, Hamilton DJ, Wheelock TR and
    Kanaley-Andrews L. 1992. The lysosomal system in neurons. Involvement at
    multiple stages of Alzheimer’s disease pathogenesis. Ann N Y Acad Sci
    674:65–88
    Ohkubo, S., and N. Nakahata. 2007. Role of lipid rafts in trimeric G protein-mediated
    signal transduction. Yakugaku Zasshi. 127:27-40
    Patel, H.V., A.A. Vyas, K.A. Vyas, Y.S. Liu, C.M. Chiang, L.M. Chi, and W. Wu. 1997.
    Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated
    oligosaccharides as a potential target for cardiotoxin action. J Biol Chem.
    272:1484-92.
    Payne, C.K., S.A. Jones, C. Chen, and X. Zhuang. 2007. Internalization and
    trafficking of cell surface proteoglycans and proteoglycan-binding ligands.
    Traffic. 8:389-401.
    Philip J.W. 1994. Bafilomycin A1 is a non-competitive inhibitor of the tonoplast
    H+-ATPase of maize coleoptiles. J Exp Bot. 45:1397-1402.
    Rodal SK., Skretting G, Garred Ø, Vilhardt F, van Deurs B, Sandvig K. 1999.
    Extraction of cholesterol with methyl-b-cyclodextrin perturbs formation of
    clathrin-coated endocytic vesicles. Mol Biol Cell 10:961–974
    Rothberg, K.G., J.E. Heuser, W.C. Donzell, Y.S. Ying, J.R. Glenney, and R.G.
    Anderson. 1992. Caveolin, a protein component of caveolae membrane coats.
    Cell. 68:673-82.
    Simons, K. and Toomre, D. 2000. Lipid rafts and signal transduction. Nat. Rev. Mol.
    Cell Biol. 1, 31-39.
    Simons, K., and E. Ikonen. 1997. Functional rafts in cell membranes. Nature 387,
    569-572.
    Smart, E. J., C. Mineo and R.G. Anderson. 1996. J. Cell Biol. 134, 1169–1177.
    Subtil, A., I. Gaidarov, K. Kobylarz, M.A. Lampson, J.H. Keen, and T.E. McGraw.
    1999. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc
    Natl Acad Sci U S A. 96:6775-80.
    Sue, S.C., J.R. Brisson, S.C. Chang, W.N. Huang, S.C. Lee, H.C. Jarrell, and W. Wu.
    2001. Structures of heparin-derived disaccharide bound to cobra cardiotoxins:
    context-dependent conformational change of heparin upon binding to the rigid
    - 34 -
    core of the three-fingered toxin. Biochemistry. 40:10436-46.
    van Deurs, B., O. W. Petersen, S. Olsnes, and K. Sandvig. 1989. The ways of
    endocytosis. Int. Rev. Cytol. 117:131-177.
    Vyas, K.A., H.V. Patel, A.A. Vyas, and W. Wu. 1998. Glycosaminoglycans bind to
    homologous cardiotoxins with different specificity. Biochemistry. 37:4527-34.
    Wang, C.H., and W.G. Wu. 2005. Amphiphilic beta-sheet cobra cardiotoxin targets
    mitochondria and disrupts its network. FEBS Lett. 579:3169-74.
    Wang, C.H., J.H. Liu, S.C. Lee, C.D. Hsiao, and W.G. Wu. 2006.
    Glycosphingolipid-facilitated membrane insertion and internalization of cobra
    cardiotoxin. The sulfatide.cardiotoxin complex structure in a membrane-like
    environment suggests a lipid-dependent cell-penetrating mechanism for
    membrane binding polypeptides. J Biol Chem. 281:656-67.
    Wu, P.L., S.C. Lee, C.C. Chuang, S. Mori, N. Akakura, W.G. Wu, and Y. Takada. 2006.
    Non-cytotoxic cobra cardiotoxin A5 binds to alpha(v)beta3 integrin and
    inhibits bone resorption. Identification of cardiotoxins as non-RGD
    integrin-binding proteins of the Ly-6 family. J Biol Chem. 281:7937-45.
    Yu, L., McPhee C.K., L. Zheng, Mardones G.A., Y. Rong, J. Peng, N. Mi, Y. Zhao, Z.
    Liu, F. Wan, Hailey D.W., Oorschot V., Klumperman J., Baehrecke E.H., and
    Michael J. 2010. Termination of autophagy and reformation of lysosomes regulated
    by mTOR. Nature. 465:942–946

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE