研究生: |
丘珉瑞 Chiu, Ming Jui |
---|---|
論文名稱: |
利用色胺酸作為螢光溫度計定量金奈米粒子之光熱轉換效率 Quantifying the photothermal efficiency of gold nanoparticles using tryptophan as an in situ fluorescent thermometer |
指導教授: |
朱立岡
Chu, Li Kang |
口試委員: |
陳仁焜
陳益佳 朱立岡 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 金奈米粒子 、光熱效應 、色胺酸 、螢光 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金奈米粒子具有表面電漿共振的光學性質,隨著不同的粒徑、形狀與環境介電常數,其共振吸收波長可由可見光波段位移到紅外光的波段,且在吸收光能後,得以熱的形式將能量釋出,即具有光熱轉換的特性。在過去十幾年中,金奈米粒子被視為奈米熱源的最佳材料,並廣泛應用於生物醫療領域,尤其在癌症熱治療。然而在金奈米粒子的光熱效應的定量研究,並未有一致的結論。本篇論文利用色胺酸的螢光強度變化與溫度所具有相依性,建立一套光致熱效螢光調變偵測系統。有別於以往利用熱電偶測量法的實驗技術,吾人以光譜技術觀察金奈米粒子其光致熱的過程,並以熱傳導模型分析加熱體積內的熱散失過程及定量各粒徑金奈米粒子的光熱轉換效率。
實驗中藉由調變532 nm連續光源雷射能量(45.8-67.6 mJ cm-2)激發六種不同粒徑(22-86 nm)的金奈米粒子,並以色胺酸螢光作為在原位的(in situ)分子溫度計,偵測金奈米粒子光熱效應造成的溫度變化。當環境溫度上升1 oC,色胺酸螢光強度衰減2.05 %,溫度偵測極限為0.2 oC。在激發樣品時,激發光束(0.83 mm)完全包覆偵測光束(0.81 mm),確保擷取到的色胺酸螢光強度變化皆為金奈米粒子熱效應所影響。在溶液樣品在532 nm的消光度一致的前提下,隨著金奈米粒子的粒徑越大,其光熱效應造成環境的溫度變化逐漸變小。根據溫度梯度所建立的熱傳導模型能適當地描述整體熱散失的過程,並得到各粒徑金奈米粒子的絕對光熱轉換效率,而相對於22 nm的金奈米粒子之光熱轉換效率隨粒徑變化的趨勢也與米氏理論相符。
吾人所建立的光致熱效應螢光調變偵測系統有別於以往使用熱電偶測量法,色胺酸螢光強度變化能即時反映金奈米粒子光熱效應造成的環境溫度變化,使訊號得到更佳的訊雜比以及實驗再現性。此外,色胺酸的螢光強度與溫度的相依性,亦可應用上於生物的熱影像的研究。
The photothermal efficiencies, denoting the efficiency of transducing incident light to heat, of gold nanoparticles of different diameters (Ø = 22–86 nm) were quantified upon exposure at 532 nm. The fluorescence of tryptophan at 300–450 nm upon 280 nm excitation serves as an in situ fluorescent thermometer to illustrate the evolution of the average temperature change in the heating volume of the nanoparticle solution. The fluorescence intensity decreases as the temperature increases, having a linear gradient of 2.05% fluorescence decrease per degree Celsius increment from 20 to 45 oC. The presence of gold nanoparticles at the nM level does not perturb the temperature-dependent fluorescence of tryptophan in terms of fluorescence contour and temperature response. The heating volume was defined by overlapping the collimated 532 nm laser (Ø = 0.83 mm) for exciting the nanoparticles and the 280 nm continuous-wave beam (Ø = 0.81 mm) for exciting tryptophan in a 2 mm × 2 mm square tube, and the fluorescence was collected perpendicularly to the collinear alignment. This method has satisfactory reproducibility and a sufficient temperature detectivity of 0.2 oC. The profiles of the average temperature evolution of the mixtures containing nanoparticles and tryptophan were derived from the evolution of fluorescence and analyzed using collective energy balancing. The relative photothermal efficiencies for different sizes of gold nanoparticles with respect to the 22 nm nanoparticle agree with those predicted using Mie theory. The employment of tryptophan as a fluorescent thermometer not only provides an in situ tool to monitor the photothermal effect of nanostructures but is also applicable to thermal imaging in biological applications.
1. Baffou, G.; Quidant, R. Thermo-Plasmonics: Using Metallic Nanostructures as Nano-Sources of Heat. Laser Photonics Rev. 2013, 7, 171-187.
2. Govorov, A. O.; Richardson, H. H. Generating Heat with Metal Nanoparticles. Nano Today 2007, 2, 30-38.
3. Baffou, G.; Quidant, R. Nanoplasmonics for Chemistry. Chem. Soc. Rev. 2014, 43, 3898-3907.
4. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238-7248.
5. Underwood, S.; Mulvaney, P. Effect of the Solution Refractive-Index on the Color of Gold Colloids. Langmuir 1994, 10, 3427-3430.
6. Link, S.; El-Sayed, M. A. Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409-453.
7. Neumann, O.; Urban, A. S.; Day, J.; Lal, S.; Nordlander, P.; Halas, N. J. Solar Vapor Generation Enabled by Nanoparticles. Acs Nano 2013, 7, 42-49.
8. Hogan, N. J.; Urban, A. S.; Ayala-Orozco, C.; Pimpinelli, A.; Nordlander, P.; Halas, N. J. Nanoparticles Heat through Light Localization. Nano Lett. 2014, 14, 4640-4645.
9. Baffou, G.; Bon, P.; Savatier, J.; Polleux, J.; Zhu, M.; Merlin, M.; Rigneault, H.; Monneret, S. Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis. Acs Nano 2012, 6, 2452-2458.
10. Baffou, G.; Urena, E. B.; Berto, P.; Monneret, S.; Quidant, R.; Rigneault, H. Deterministic Temperature Shaping Using Plasmonic Nanoparticle Assemblies. Nanoscale 2014, 6, 8984-8989.
11. Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. J. Phys. Chem. C 2007, 111, 3636-3641.
12. Richardson, H. H.; Hickman, Z. N.; Govorov, A. O.; Thomas, A. C.; Zhang, W.; Kordesch, M. E. Thermooptical Properties of Gold Nanoparticles Embedded in Ice: Characterization of Heat Generation and Melting. Nano Lett. 2006, 6, 783-788.
13. Bendix, P. M.; Nader, S.; Reihani, S.; Oddershede, L. B. Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers. Acs Nano 2010, 4, 2256-2262.
14. Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-Infrared Light-Responsive Nanomaterials in Cancer Therapeutics. Chem. Soc. Rev. 2014, 43, 6254-6287.
15. Jaque, D.; Maestro, L. M.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Rodriguez, E. M.; Sole, J. G. Nanoparticles for Photothermal Therapies. Nanoscale 2014, 6, 9494-9530.
16. Jang, H.; Kim, Y. K.; Huh, H.; Min, D. H. Facile Synthesis and Intraparticle Self-Catalytic Oxidation of Dextran-Coated Hollow Au-Ag Nanoshell and Its Application for Chemo-Thermotherapy. Acs Nano 2014, 8, 467-475.
17. Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer Cell Imaging and Photothermal Therapy in the near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc. 2006, 128, 2115-2120.
18. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-Mediated near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance. P. Natl. Acad. Sci. U. S. A. 2003, 100, 13549-13554.
19. Gu, F. X.; Karnik, R.; Wang, A. Z.; Alexis, F.; Levy-Nissenbaum, E.; Hong, S.; Langer, R. S.; Farokhzad, O. C. Targeted Nanoparticles for Cancer Therapy. Nano Today 2007, 2, 14-21.
20. Timko, B. P.; Dvir, T.; Kohane, D. S. Remotely Triggerable Drug Delivery Systems. Adv. Mater. 2010, 22, 4925-4943.
21. Sailor, M. J.; Park, J. H. Hybrid Nanoparticles for Detection and Treatment of Cancer. Adv. Mater. 2012, 24, 3779-3802.
22. Urban, A. S.; Pfeiffer, T.; Fedoruk, M.; Lutich, A. A.; Feldmann, J. Single-Step Injection of Gold Nanoparticles through Phospholipid Membranes. Acs Nano 2011, 5, 3585-3590.
23. Christopher, P.; Xin, H. L.; Linic, S. Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures. Nat. Chem. 2011, 3, 467-472.
24. Richardson, H. H.; Carlson, M. T.; Tandler, P. J.; Hernandez, P.; Govorov, A. O. Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions. Nano Lett. 2009, 9, 1139-1146.
25. Jiang, K.; Smith, D. A.; Pinchuk, A. Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles. J. Phys. Chem. C 2013, 117, 27073-27080.
26. El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Selective Laser Photo-Thermal Therapy of Epithelial Carcinoma Using Anti-Egfr Antibody Conjugated Gold Nanoparticles. Cancer Letters 2006, 239, 129-135.
27. Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles. Photochem. Photobiol. 2006, 82, 412-417.
28. Loo, C.; Lowery, A.; Halas, N. J.; West, J.; Drezek, R. Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Lett. 2005, 5, 709-711.
29. Yavuz, M. S., et al. Gold Nanocages Covered by Smart Polymers for Controlled Release with near-Infrared Light. Nat. Mater. 2009, 8, 935-939.
30. Corma, A.; Garcia, H. Supported Gold Nanoparticles as Catalysts for Organic Reactions. Chem. Soc. Rev. 2008, 37, 2096-2126.
31. Aprile, C.; Abad, A.; Hermenegildo, G. A.; Corma, A. Synthesis and Catalytic Activity of Periodic Mesoporous Materials Incorporating Gold Nanoparticles. J. Mater. Chem. 2005, 15, 4408-4413.
32. Shenoy, D.; Fu, W.; Li, J.; Crasto, C.; Jones, G.; DiMarzio, C.; Sridhar, S.; Amiji, M. Surface Functionalization of Gold Nanoparticles Using Hetero-Bifunctional Poly(Ethylene Glycol) Spacer for Intracellular Tracking and Delivery. Int. J. Nanomed. 2006, 1, 51-57.
33. Salem, A. K.; Searson, P. C.; Leong, K. W. Multifunctional Nanorods for Gene Delivery. Nat. Mater. 2003, 2, 668-671.
34. Goodman, C. M.; McCusker, C. D.; Yilmaz, T.; Rotello, V. M. Toxicity of Gold Nanoparticles Functionalized with Cationic and Anionic Side Chains. Bioconjugate Chem. 2004, 15, 897-900.
35. Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science 2006, 311, 622-627.
36. Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of Nanoparticles. Small 2008, 4, 26-49.
37. O'Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D., West, J. L. Photo-Thermal Tumor Ablation in Mice Using near Infrared-Absorbing Nanoparticles. Cancer Letters 2004, 209, 171-176.
38. Dickerson, E. B.; Dreaden, E. C.; Huang, X. H.; El-Sayed, I. H.; Chu, H. H.; Pushpanketh, S.; McDonald, J. F.; El-Sayed, M. A. Gold Nanorod Assisted near-Infrared Plasmonic Photothermal Therapy (Pptt) of Squamous Cell Carcinoma in Mice. Cancer Letters 2008, 269, 57-66.
39. Stern, J. M.; Stanfield, J.; Kabbani, W.; Hsieh, J. T.; Cadeddu, J. R. A. Selective Prostate Cancer Thermal Ablation with Laser Activated Gold Nanoshells. J. Urol. 2008, 179, 748-753.
40. Biella, S.; Rossi, M. Gas Phase Oxidation of Alcohols to Aldehydes or Ketones Catalysed by Supported Gold. Chem. Commun. 2003, 378-379.
41. Strutt, J. W. On the Transmission of Light through an Atmosphere Containing Small Particles in Suspension, and on the Origin of the Blue of the Sky. Philosophical Magazine 1899, 47, 375-384.
42. Bohren, C. F., Huffman D. In Absorption and Scattering of Light by Small Particles, Wiley-VCH Verlag GmbH: Weinheim: 1983; pp 82-129.
43. Kreibig , U., Vollmer , M. Optical Properties of Metal Clusters; Springer: Berlin: 1995; Vol. 25, p 532.
44. Eustis, S.; El-Sayed, M. A. Why Gold Nanoparticles Are More Precious Than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes. Chem. Soc. Rev. 2006, 35, 209-217.
45. Myroshnychenko, V.; Rodriguez-Fernandez, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzan, L. M.; de Abajo, F. J. G. Modelling the Optical Response of Gold Nanoparticles. Chem. Soc. Rev. 2008, 37, 1792-1805.
46. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668-677.
47. Ghosh, S. K.; Pal, T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem. Rev. 2007, 107, 4797-4862.
48. Link, S.; El-Sayed, M. A. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 1999, 103, 4212-4217.
49. Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J. Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates. Nano Lett. 2005, 5, 1569-1574.
50. Grua, P.; Morreeuw, J. P.; Bercegol, H.; Jonusauskas, G.; Vallee, F. Electron Kinetics and Emission for Metal Nanoparticles Exposed to Intense Laser Pulses. Phys. Rev. B 2003, 68, 035424.
51. Inouye, H.; Tanaka, K.; Tanahashi, I.; Hirao, K. Ultrafast Dynamics of Nonequilibrium Electrons in a Gold Nanoparticle System. Phys. Rev. B 1998, 57, 11334-11340.
52. Arbouet, A., et al. Electron-Phonon Scattering in Metal Clusters. Phys. Rev. Lett. 2003, 90, 177401.
53. Huang, W. Y.; Qian, W.; El-Sayed, M. A.; Ding, Y.; Wang, Z. L. Effect of the Lattice Crystallinity on the Electron-Phonon Relaxation Rates in Gold Nanoparticles. J. Phys. Chem. C 2007, 111, 10751-10757.
54. Hodak, J. H.; Henglein, A.; Hartland, G. V. Size Dependent Properties of Au Particles: Coherent Excitation and Dephasing of Acoustic Vibrational Modes. J. Chem. Phys. 1999, 111, 8613-8621.
55. Baffou, G.; Rigneault, H. Femtosecond-Pulsed Optical Heating of Gold Nanoparticles. Phys. Rev. B 2011, 84, 035415.
56. Qin, Z. P.; Bischof, J. C. Thermophysical and Biological Responses of Gold Nanoparticle Laser Heating. Chem. Soc. Rev. 2012, 41, 1191-1217.
57. Hu, M.; Hartland, G. V. Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time Versus Size. J. Phys. Chem. B 2002, 106, 7029-7033.
58. Lakowicz, J. R. Principles of Fluorescence Spectroscopy. Springer 2006.
59. Edelhoch, H. Spectroscopic Determination of Tryptophan and Tyrosine in Proteins. Biochemistry 1967, 6, 1948-1954.
60. Bernath, P. F. In Spectra of Atoms and Molecules second ed.; Oxford University Press: New York: 2005; p 389.
61. Gruebele, M.; Sabelko, J.; Ballew, R.; Ervin, J. Laser Temperature Jump Induced Protein Refolding. Accounts Chem. Res. 1998, 31, 699-707.
62. Kubelka, J. Time-Resolved Methods in Biophysics. 9. Laser Temperature-Jump Methods for Investigating Biomolecular Dynamics. Photochem. Photobiol. Sci. 2009, 8, 499-512.
63. Thompson, P. A.; Eaton, W. A.; Hofrichter, J. Laser Temperature Jump Study of the Helix Reversible Arrow Coil Kinetics of an Alanine Peptide Interpreted with a 'Kinetic Zipper' Model. Biochemistry 1997, 36, 9200-9210.
64. Thompson, P. A. Laser Temperature Jump for the Study of Early Events in Protein Folding. Tech. Prot. Chem. 1997, 8, 735-743.
65. Stevenson, K. L.; Papadantonakis, G. A.; LeBreton, P. R. Nanosecond Uv Laser Photoionization of Aqueous Tryptophan: Temperature Dependence of Quantum Yield, Mechanism, and Kinetics of Hydrated Electron Decay. J. Photoch. Photobio. A 2000, 133, 159-167.
66. Eisinger, J.; Navon, G. Fluorescence Quenching and Isotope Effect of Tryptophan. J. Chem. Phys. 1969, 50, 2069-2077.
67. Bent, D. V.; Hayon, E. Excited-State Chemistry of Aromatic Amino-Acids and Related Peptides .2. Phenylalanine. J. Am. Chem. Soc. 1975, 97, 2606-2612.
68. Robbins, R. J.; Fleming, G. R.; Beddard, G. S.; Robinson, G. W.; Thistlethwaite, P. J.; Woolfe, G. J. Photophysics of Aqueous Tryptophan - Ph and Temperature Effects. J. Am. Chem. Soc. 1980, 102, 6271-6279.
69. Gally, J. A.; Edelman, G. M. The Effect of Temperature on the Fluorescence of Some Aromatic Amino Acids and Proteins. Biochim. Biophys. Acta 1962, 60, 499-509.
70. 羅聖全 科學基礎研究之重要利器-掃描式電子顯微鏡(Sem). 科學研習月刊 2013, 52, 2-4.
71. Turkevich, J.; Stevenson, P. C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Farad. Discuss. 1951, 11, 55-75.
72. Jana, N. R.; Gearheart, L.; Murphy, C. J. Seeding Growth for Size Control of 5-40 Nm Diameter Gold Nanoparticles. Langmuir 2001, 17, 6782-6786.
73. Faust, C. B. Modern Chemical Techniques: An Essential Reference for Student and Teacher.; Royal Society of Chemistry: 1992.
74. Usb4000 Optical Bench Options. http://oceanoptics.com/product-details/usb4000-optical-bench-options/.
75. Chen, H. J.; Shao, L.; Ming, T. A.; Sun, Z. H.; Zhao, C. M.; Yang, B. C.; Wang, J. F. Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals. Small 2010, 6, 2272-2280.