研究生: |
莊秉豫 Chuang, Ping-Yu |
---|---|
論文名稱: |
非接觸電能傳輸系統研製 Design and Implementation of Contactless Power Supply Systems |
指導教授: |
吳財福
Wu, Tsai-Fu |
口試委員: |
余國瑞
Yu, Gwo-Ruey 林長華 Lin, Chang-Hua 廖益弘 Liao, Yi-Hung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | DC/DC降壓型轉換器 、DC/DC升壓型轉換器 、非接觸電能傳輸系統 、LLC諧振轉換器 、軟切換 |
外文關鍵詞: | DC/DC buck converter, DC/DC boost converter, contactless power transmission system, LLC resonant converter, soft switching |
相關次數: | 點閱:69 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在研製一套適用於工業製造與半導體製程上物料傳輸之無線電能傳輸系統,其原理為透過電磁感應實現無線傳輸。此套系統主要由電力級與控制級兩個部分所組成,電力級部分由前級之降壓型轉換器、中間級LLC諧振轉換器及後級升壓型轉換器所組成。前級負責將可能變動之輸入電壓進行降壓與穩壓;中間級先是透過諧振電路使功率開關達到軟切換之特性,以減小開關損失,再透過變壓器之電磁感應原理進行電能傳輸與實現電器隔離之功能;後級則負責將傳輸且經全波整流後之直流電壓升壓至負載所需之電壓。變壓器部分由於受二次側導線長短所影響之漏電感可能影響增益,因此本研究將於二次側電路輸入端串上電容器,使其達到漏電感補償之功效。控制級部分使用由Renesas公司生產之RX62T微控制器做為控制核心,透過電壓與電流回授電路所接收到之訊號進行運算,以調整開關責任比率控制功率開關之導通與截止。
本研究將依序介紹研究背景與動機、LLC諧振轉換器架構分析與設計、硬體周邊電路、韌體程式設計與規劃及實務考量,最後實際製作出電能傳輸系統。
本研究之主要貢獻為:(1) 研製出一部輸入電壓為280 V,輸出電壓為310 V,諧振槽切換頻率為20 kHz,最大額定功率為1 kW的電能傳輸系統。(2) 採用三級架構,前級為降壓型轉換器、中級為全橋型諧振轉換器及後級為升壓型轉換器。
This research aims to develop a wireless power transmission system suitable for material transfer in industrial and semiconductor manufacturing production lines. The system operates based on electromagnetic induction. It consists of two main components: the power stage and the control stage. The power stage includes a step-down converter as the front-end, an intermediate LLC resonant converter, and a boost converter as the back-end. The front-end is responsible for stepping down and stabilizing the variable input voltage. The intermediate stage achieves soft switching characteristics through a resonant circuit to minimize switch losses and enables power transmission and electrical isolation through the electromagnetic induction principle of the transformer. The back-end is responsible for boosting the rectified DC voltage, which is transmitted, to the required voltage for the load. To compensate for the leakage inductance, which may affect the gain due to variations in the secondary-side wire length, capacitors are connected in series at the input of the secondary circuit in this study.
The control stage utilizes the RX62T microcontroller from Renesas as the control core. It processes signals received from voltage and current feedback circuits to adjust the duty cycle and control the switching of power switches.
This research will sequentially introduce the research background and motivation, analysis and design of the LLC resonant converter, hardware peripheral circuits, firmware programming and planning, as well as practical considerations. Finally, an actual implementation of the wireless power transmission system will be presented.
The main contributions of this study are as follows: (1) development of a 1 kW power transmission system with an input voltage of 280 V, output voltage of 310 V, resonant tank switching frequency of 20 kHz. (2) adoption of a three-stage architecture consisting of a step-down converter in the front-end, a full-bridge resonant converter in the intermediate stage, and a boost converter in the back-end.
[1] J. M. Barnard, J. A. Ferreira, and J. D. Van Wyk,“Sliding Transformers for Linear Contactless Power Delivery” in IEEE Trans. Ind. Electron., vol. 44,No. 6, December 1997.
[2] J. Lastowiecki and P. Staszewski, “Sliding Transformer With Long Magnetic Circuit for Contactless Electrical Energy Delivery to Mobile Receivers” IEEE Trans. Ind. Electron., vol. 53,No. 6, December 2006.
[3] A. Momeneh, M. Castilla, M. M. Ghahderijani, and J. Vicuña, “Analysis, design and implementation of a residential inductive contactless energy transfer system with multiple mobile clamps,” IET Power Electronics., Research Article, 2017.
[4] EPARC,電力電子學綜論,全華,2015。
[5] S. Yu, R. Chen and A. Viswanathan, “Survey of Resonant Converter Topologies,” Texas Instruments, 2018.
[6] 吳俊昇,具穩壓與最大功率追蹤功能之LLC諧振式電源轉換器分析與設計,國立清華大學電機系,碩士論文,2017年7月。
[7] 吳義利,切換式電源轉換器(3版)原理與實用設計技術(實例設計導向),文笙,2019。
[8] 張永霖,高降壓比穩壓器研製,國立清華大學電機系,碩士論文,2022年7月。
[9] P. R. Ouyang, V. Pano and T. Dam, “PID contour tracking control in position domain,” in Proc. 2012 IEEE Int. Symposium Ind. Electron., Hangzhou, pp. 1297-1302, 2012.
[10] K. Ang, G. Chong and Y. Li, “PID control system analysis, design, and technology,” IEEE Trans. Control Systems Tech.., vol. 13, no. 4, pp. 559-576, July 2005.
[11] 葉冠輔,高降壓比LLC諧振轉換器研製,國立清華大學電機系,碩士論文,2021年7月。
[12] Texas Instruments, Designing an LLC Resonant Half-Bridge Power Converter, 2010.
[13] R. L. Lin and C. W. Lin, “Design criteria for resonant tank of LLC DC-DC resonant converter,” IECON 2010, pp. 427-432.
[14] S. H. Choi, ‘‘Design Consideration of Half-Bridge LLC Resonant Converter,” Journal Power Electron., vol. 7, no.1, Jan, 2007.
[15] B. Yang, F. Lee, A. Zhang, and G. Huang, ‘‘LLC resonant converter for front end DC/DC conversion,” in Proc. IEEE APEC, vol. 2, pp. 1108-112, 2002.
[16] 游翼,具頻率追蹤功能之超音波驅動器研製,國立清華大學電機系,碩士論文,2018年7月。
[17] Texas Instruments, UC3843 Datasheet.
[18] IXYS Integrated Circuit Division, LOC110 Datasheet.
[19] LEM, LAX 100-NP Datasheet.
[20] Infineon Technologies, 1ED160N12AF Datasheet.
[21] Renesas Electronics, RX62T Group User’s Manual, Dec. 2011.
[22] Wolfspeed, C2M0025120D Datasheet.
[23] IXYS DSE160-06A Datasheet.
[24] Ferroxcube, Ferrite Mn-Zn Material Characteristics.
[25] AVX, C0G(NP0) capacitor Datasheet.
[26] KEMET, Film capacitor Datasheet.