研究生: |
張超閔 Chang, Chao-Min |
---|---|
論文名稱: |
單晶矽微機電深蝕刻製程平台:以電容耦合驅動之梳狀致動器為例 The Fabrication Process of MEMS Device Based on Single Crystal Silicon and Deep Etching — Fabricating a Comb-Drive Actuator Driven by Capacitively-Coupled-Power as an Example |
指導教授: |
侯帝光
Hou, Max Ti-Kuang 陳榮順 Chen, Rongshun |
口試委員: |
葉哲良
Yeh, Jer-Liang Andrew 胡毓忠 Hu, Yuh-Chung 任貽明 Jen, YI-Ming 陳揚哲 Chen, Yang-Che |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 電容耦合 |
外文關鍵詞: | capacitive coupling |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,微機電系統(Micro-Electro-Mechanical System,簡稱 MEMS)在消費性電子產品被大量應用。這可歸功於製程技術持續開發,元件設計不斷創新。本研究繼續上述工作,以單晶矽晶圓為基材,配合高深寬比製程技術,設計新式犧牲結構取代原有犧牲層,以此提出一新式微機電製程平台,並開發了一個新式微致動器。
在製程方面,本研究利用深蝕刻技術蝕穿單晶矽晶片,使元件結構厚度或溝渠垂直深度可達矽晶片之全厚度,且有效降低製程複雜度。此外,利用低阻值矽晶片,使元件能從厚度方向進行電流傳遞,易與其它元件進行垂直方向整合。上述優點使微機電元件具備三維整合的可行性,增加元件設計的靈活性。
在平台製程能力的驗證上,本文以梳狀靜電致動器作為研究對象。本研究以上述製程平台製作單晶矽微致動器,並加以測試。初步驗證此製程平台在梳狀靜電致動器製造上之可行性。此外,本研究將元件與印刷電路板相互接合,驗證此製程平台三維整合之可行性。
在元件方面,本研究提出並討論新式驅動機制來驅動梳狀靜電致動器。此梳狀靜電致動器的梳狀手指數量或初始重疊面積是不對稱的。當施加不同大小的電壓於兩邊的定子上,轉子會因為電容耦合效應感應出一個電壓,轉子兩邊將有不同的電位能而使轉子致動。此元件利用上述製程平台製作,比對實驗量測與理論分析結果,顯示電容耦合機制可成功用於致動梳狀致動器。此驅動方式有效解決異質元件電性連接問題,降低異質整合元件設計與驅動上的難度。且可減少製程程序與降低製程成本。
Recently, Micro-Electro-Mechanical Systems (MEMS) have been increasingly used in consumer electrical products, due to their progress in fabrication process and device design. Following the trend, the work further improves the process and design, which use single crystal silicon (SCS) wafers and deep etching process as the substrate and the primary step, respectively. The improvement mainly contains a release method, a fabrication platform and an actuator.
In fabrication, MEMS structures are made of SCS wafers by using deep etching process. A new fabrication platform is proposed. Either structure thickness or trench depth significantly increases, even as large as the wafer thickness. The process is significantly simplified. By using low resistance SCS wafers, electrical current freely flow through the MEMS structures, makes MEMS devices are easier integrated vertically. The foregoing features increase the feasibility of three-dimensional-MEMS. To verify the fabrication platform, a comb-drive actuator was fabricated.
In device development, a new actuation mechanism is proposed to actuate comb-drive actuators. An asymmetric configuration of the finger overlap was used to generate capacitive coupling for the actuation mechanism. When the driving voltages were applied on the stators, a voltage would be induced at the rotor due to the capacitive coupling. Then, an electrostatic force would be exerted onto the rotor due to the voltage differences between the stators and the rotor. The actuator’s static displacement and resonant frequency were theoretically analyzed. The experimental results verified the theoretical analysis. Using this method, the rotor can be fully insulated, i.e. the comb-drive actuators containing heterogeneous structures (e.g. flexible and insulating folded beams) become more practical and promising to provide an impact to MEMS technology.
[1]L. -S. Fan, Y. -C. Tai and R. S. Muller, “Pin-joints, springs, cranks, gears, and other novel micromechanical structures,” Transducers’87, Tokyo, Japan, June 1987, pp. 853-856.
[2]L. -S. Fan, Y. -C. Tai and R. S. Muller, “IC-processed electrostatic micromotors,” Sensors and Actuators, vol. 20, no. 1–2, pp. 41-47, 1989.
[3]R. T. Howe and R. S. Muller, “Polycrystalline and amorphous silicon micromechanical beams: annealing and mechanical properties,” Sensors and Actuators, vol. 4, pp. 447-454, 1983.
[4]R. T. Howe, “Surface micromachining for microsensors and microactuators,” Journal of Vacuum Science and Technology, Part B, vol. 6, pp. 1809-1813, 1988.
[5]W. C. Tang, T.-C. H. Nguyen and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sensors and actuators, vol. 20, no. 1-2, pp. 25-32, 1989.
[6]W. C. Tang, T. -C. H. Nguyen, M. W. Judy and R. T. Howe, “Electrostatic-comb drive of lateral polysilicon resonators,” Sensors and Actuators A: Physical, Vol. 21, no. 1–3, pp. 328-331, 1990.
[7]K. E. Bean, “Anisotropic etching of silicon,” IEEE Transactions on Electron Devices, vol. ED-25, pp. 1185–1193, Oct. 1978.
[8]E. Bassous, “Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon,” IEEE Transactions on Electron Devices, vol. ED-25, pp. 1178–1185, Oct. 1978.
[9]J. Hsieh and W. Fang, “A novel microelectrostatic torsional actuator,” Sensors and Actuators A: Physical, vol. 79, no. 1, pp. 64-70, 2000.
[10]J. W. Coburn and H. F. Winters, “Plasma etching—A discussion of mechanisms,” Journal of Vacuum Science and Technology, vol. 16, no. 2, pp. 391-403, Mar. 1979.
[11]C. Linder, T. Tschan and N. F. de Rooij, “Deep dry etching techniques as a new IC compatible tool for silicon micromachining,” Transducers’91, San Francisco, CA , June 1991. pp. 524–527.
[12]M. Esashi, M. Takinami, Y. Wakabayashi and K. Minami, “High-rate directional deep dry etching for bulk silicon micromachining,” Journal of Micromechanics and Microengineering, vol. 5, no. 1, pp. 5–10, Mar. 1995.
[13]K. A. Shaw, S. G. Adams and N. C. MacDonald, “A single-mask lateral accelerometer,” Transducers’93, Yokohama, Japan, June 1993, pp. 210–213.
[14]J. Bhardwaj, H. Ashraf, and A. McQuarrie, “Dry silicon etching for MEMS,” 191st Meeting Electrochemical Society, Microstructures and Microfabricated Systems III Symposium, May. 1997, vol. 97-5, pp. 118–130.
[15]K. A. Shaw, Z. L. Zhang and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon process for microelectromechanical structures,” MEMS’93, Fort Lauderdale, FL, Feb. 1993, pp. 155–160.
[16]C. G. Keller and R.T. Howe, “Hexsil tweezers for teleoperated micro-assembly,” MEMS’97, Nagoya, Japan, Jan. 1997, pp. 72-77.
[17]F. Ayazi and K. Najafi, “A HARPSS polysilicon vibrating ring gyroscope,” Journal of Microelectromechanical Systems, vol. 10, no. 2, pp. 169-179, Jun 2001.
[18]S. Y. No, and F. Ayazi, “The HARPSS process for fabrication of nano-precision silicon electromechanical resonators,” IEEE-NANO 2001, Maui, USA, Oct. 2001, pp. 489-494.
[19]J. Kim; S. Park, D. Kwak, H. Ko and D. D. Cho, “An x-axis single-crystalline silicon microgyroscope fabricated by the extended SBM process,” Journal of Microelectromechanical Systems, vol. 14, no. 3, pp. 444- 455, 2005.
[20]B. P. van Drieënhuizen, N. I. Maluf, I. E. Opris and G. T. A. Kovacs, “Force-balanced accelerometer with mG resolution, fabricated using silicon fusion bonding and deep reactive ion etching,” Transducers’97, Chicago, IL, June 1997, vol. 2, pp. 1229–1230.
[21]Y. Zhu, G. Yan, J. F., J. Zhou, X. Liu, Z. Li and Y. Wang , “Fabrication of keyhole-free ultra-deep high-aspect-ratio isolation trench and its applications,” Journal of Micromechanics and Microengineering, vol. 15, no. 3, pp. 636–642, Jan. 2005.
[22]H. Y. Lin and W. Fang, “Rib-reinforced micromachined beam and its applications,” Journal of Micromechanics and Microengineering, vol. 10, pp. 93–97, 2000.
[23]L.-Y. Lin, E.L. Goldstein and R. W. Tkach, “On the expandability of free-space micromachined optical cross connects,” Journal of Lightwave Technology, vol. 18, no. 4, pp. 482-489, April 2000.
[24]B. Diem, P. Rey, S. Renard, S. V. Bosson, H. Bono, F. Michel, M. T. Delaye and G. Delapierre, “SOI 'SIMOX'; from bulk to surface micromachining, a new age for silicon sensors and actuators,” Sensors and Actuators A: Physical, Vol. 46, No. 1–3, pp. 8-16, 1995.
[25]S. Renard, “Industrial MEMS on SOI,” Journal of Micromechanics and Microengineering, vol. 10, pp. 245–249, 2000.
[26]E. Ollier, “Optical MEMS devices based on moving waveguides,” Journal on Selected Topics in Quantum Electronics, vol. 8, no. 1, pp. 155-162, 2002.
[27]J. Xie, R. Agarwal, Y. Liu, J. M. Tsai, N. Ranganathan and J. Singh, “Compact electrode design for an in-plane accelerometer on SOI with refilled isolation trench,” Journal of Micromechanics and Microengineering, vol. 21, no. 9, pp. 095005, 2011.
[28]M. de Boer, H. Jansen and M. Elwenspoek, “The black silicon method V: a study of the fabrication of movable structure for micro electromechanical systems, ” Transducers’95, Stockholm, Sweden, 1995, pp. 565-568.
[29]H. Jansen, M. de Boer and M. Elwenspoek, “The black silicon method VI: high aspect ratio trench etching for MEMS applications, ”MEMS’96, San Diego, CA, Feb. 1996, pp. 44-48.
[30]X. Mao, Z. Yang, Z. Li and G. Yan, “The method of prevent footing effect in making SOI micro-mechanical structure,” NEMS'09, Shenzhen, China, Jan. 2009, pp.506-509.
[31]K. Takahata, N. Shibaike and H. Guckel, “A novel micro electro-discharge machining method using electrodes fabricated by the LIGA process, ” MEMS’99, Orlando, Florida, USA, Jan. 1999, pp. 238-243.
[32]J. Löetters, W. Olthuis, P. Veltink and P. Bergveld, “Polydimethylsiloxane, a photocurable rubberelastic polymer used as spring material in micromechanical sensors,” Microsystem Technologies, vol. 3, pp. 64-67,1997.
[33]T. Fujita , K. Maenaka and Y. Takayama, “Dual-axis MEMS mirror for large deflection-angle using SU-8 soft torsion beam,” Sensors and Actuators A : Physical, vol. 121, no. 1, pp. 16-21, 2005.
[34]Y. Zhao and T. Cui, “Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique,” Journal of Micromechanics and Microengneering, vol. 13, no. 3, pp. 430-443, 2003.
[35]Y. Zhao and T. Cui, “SOI wafer mold with high-aspect-ratio microstructures for hot embossing process,” Microsystem Technologies, vol. 10, no. 6, pp. 544–546, 2004.
[36]W. Dai, K. Lian and W. Wang, “Design and fabrication of a SU-8 based electrostatic microactuator,” Microsystem Technologies, vol. 13, no. 3, pp. 271–277, 2007.
[37]J. Chung and W. Hsu, “Fabrication of 3D photoresist microstructures for the polymer vertical comb drive,” NEMS’07, Bangkok, Thailand, Jan. 2007, pp. 12-19.
[38]J. Chung and W. Hsu, “Fabrication of a polymer-based torsional vertical comb drive using a double-side partial exposure method,” Journal of Micromechanics and Microengneering, vol. 18, no. 3, pp. 1-7, 2008.
[39]Y. Tung and K. Kurabayashi, ”A single-layer multiple degree-of-freedom PDMS-on-silicon dynamic focus micro-lens,” MEMS’06, Istanbul, Turkey, Jan. 2006, pp. 838-841.
[40]Y.-C. Tung and K. Kurabayashi, “A single-layer PDMS-on-silicon hybrid actuator with multi-axis out-of-plane motion capabilities, Part II: fabrication and characterization,” Journal of Microelectromechanical Systems, vol. 14, no. 3, pp. 558-566, 2005.
[41]D. Bachmann, S. Kühne and C. Hierold, “MEMS scanning mirror supported by soft polymeric spring and actuated by electrostatic charge separation,” MEMS’07, Kobe, Japan, Jan. 2007, pp. 723-726.
[42]D. Bachmann, B. Schöberle, S. Kühne, Y. Leiner and C. Hierold, “Fabrication and characterization of folded SU-8 suspensions for MEMS applications,” Sensors and Actuators A : Physical, vol. 131-131, pp. 379-386, 2006.
[43]M. Lee, Y. Chen, C.-M. Chang, M. T. -K. Hou and R. Chen, “A hybrid vertical comb-drive actuator supported by flexible PDMS suspensions,” Transducers’11, Beijing, China, June 2011, pp. 1476–1479.
[44]M. Lee, A hybrid vertical comb-drive actuator supported by flexible PDMS suspensions, Master Thesis, NTHU, Taiwan, 2011.
[45]M. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, Edition 2, CRC press, 2002.
[46]K.E. Petersen, “Silicon as a mechanical material,” Proceedings of the IEEE, vol. 70, no. 5, pp. 420- 457, 1982.
[47]http://www.jahm.com, Temperature Dependent Elastic & Thermal Properties Database.
[48]K. Takahashi, M. Mita, H. Fujita and H. Toshiyoshi, “Topological layer switch technique for monolithically integrated electrostatic XYZ-stage,” MEMS’07, Kobe, Japan. 2007, pp.651-654.
[49]M. Stranczl, E. Sarajlic, H. Fujita, M. A. M. Gijs and C. Yamahata, “High-Angular-Range Electrostatic Rotary Stepper Micromotors Fabricated With SOI Technology,” Journal of Microelectromechanical Systems, vol. 21, no. 3, pp. 605-620, June 2012.
[50]K. Isamoto, K. Totsuka, T. Suzuki, T. Sakai, A. Morosawa, C. Chong; H. Fujita and H. Toshiyoshi, “A high speed MEMS scanner for 140-kHz SS-OCT,” Optical MEMS and Nanophotonics (OMN), Istanbul, Turkey. Aug. 2011, pp. 73-74,
[51]M. Kumemura, D. Collard, N. Sakaki, C. Yamahata, M. Hosogi, G. Hashiguchi and H. Fujita, “Single-DNA-molecule trapping with silicon nanotweezers using pulsed dielectrophoresis,” Journal of Micromechanics and Microengineering, vol. 21, no. 5, PP. 054020, 2011.
[52]D. Yamane, W. Sun, H. Seita, S. Kawasaki, H. Fujita and H. Toshiyoshi, “A Ku-band Dual-SPDT RF-MEMS Switch by Double-Side SOI Bulk Micromachining,” Journal of Microelectromechanical Systems, vol. 20, no. 5, pp. 1211-1221, Oct. 2011.
[53]H.-S. Hsieh, H.-C. Chang, C.-F. Hu, C.-L. Cheng and W. Fang, “A novel stress isolation guard-ring design for the improvement of a three-axis piezoresistive accelerometer,” Journal of Micromechanics and Microengineering, vol. 21, no. 10, pp. 105006, 2011.
[54]S. F. Al-Sarawi, D. Abbott and P. D. Franzon, “A review of 3-D packaging technology,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, vol. 21, no. 1, pp. 2-14, 1998.
[55]J. Demmin, D. Baker and W. Zohni, “Stacked chip scale packages: manufacturing issues, reliability results, and cost analysis,” 28th International Electronics Manufacturing Technology Symposium, San Jose, California, USA, July 2003, pp. 241- 247.
[56]http://www.flipchips.com/tutorial71.html , flipchips.com.
[57]M. Bohr, The New Era of Scaling in an SoC World, ISSCC, 2009, pp. 23.
[58]R. A M Receveur, M. Zickar, C. Marxer, V. Larik and N. F de Rooij, “Wafer level hermetic package and device testing of a SOI-MEMS switch for biomedical,” Journal of Micromechanics and Microengineering, vol. 16, no. 4, pp. 676-683, 2006.
[59]C. S. Premachandran, J. Lau, L. Xie, A. Khairyanto, K. Chen, M. Ei Pa Pa, M. Chew and W. K. Choi, “A novel, wafer-level stacking method for low-chip yield and non-uniform, chip-size wafers for MEMS and 3D SIP applications,” ECTC, Lake Buena Vista, Florida, 27-30 May 2008, pp.314-318.
[60]C.-W. Lin, H.-A. Yang, W. C. Wang and W. Fang, “Implementation of three-dimensional SOI-MEMS wafer-level packaging using through-wafer interconnections,” Journal of Micromechanics and Microengineering, vol. 17, no. 6, pp. 1200-1205, 2007.
[61]S.-H. Choa, “Reliability study of hermetic wafer level MEMS packaging with through-wafer interconnect,” Microsystem Technologies, vol. 15, no. 5, pp. 677-686, 2009.
[62]J. Gu, W. T. Pike and W. J. Karl, “A novel vertical solder pump structure for through-wafer interconnects,” MEMS’10, Cancun, Mexico, Jan. 2010, pp. 500-503.
[63]T. Bauer, “High density through wafer via technology,” NSTI-Nanotech, Santa Clara, CA, USA, 20-24 May 2007, pp. 116-9.
[64]C.-W. Lin, C.-P. Hsu, H.-A. Yang, W. C. Wan and W. Fang, “Implementation of silicon-on-glass MEMS devices with embedded through-wafer silicon vias using the glass reflow process for wafer-level packaging and 3D chip integration,” Journal of Micromechanics and Microengineering, vol. 18, no. 2, pp. 025018, 2008.
[65]S.-H. Lee, J. Cho, S. W. Lee, M. F. Zaman, F. Ayazi and K. Najafi, “A Low-Power Oven-Controlled Vacuum Package Technology for High-Performance MEMS,” MEMS’09, Sorrento, Italy, 25-29 Jan. 2009, pp.753-756.
[66]J. Oberhammer and G. Stemme, “BCB contact printing for patterned adhesive full-wafer bonded 0-level packages,” Journal of Microelectromechanical Systems, vol. 14, no. 2, pp. 419–425, 2005.
[67]J M Li, C Liu, H C Qiao, L Y Zhu, G Chen and X D Dai, “Hot embossing/bonding of a poly(ethylene terephthalate) (PET) microfluidic chip,” Journal of Micromechanics and Microengineering, vol. 18, no. 1, pp. 015008, 2008.
[68]B. Lee, S. Seok and K. Chun, “A study on wafer level vacuum packaging for MEMS devices,” Journal of Micromechanics and Microengineering, vol. 13, no. 5, pp. 663-669, 2003.
[69]S. Johansson, J. -A. Schweitz, L. Tenerz and J. Tiren, “Fracture testing of silicon microelements in situ in a scanning electron microscope,” Journal of Applied Physics, vol. 63, pp. 4799–4803, 1988.
[70]S. Johansson, F. Ericson and J. -A. Schweitz, “Influence of surface coatings on elasticity, residual stresses, and fracture properties of silicon microelements,” Journal of Applied Physics, vol. 65, pp. 122–128, 1989.
[71]C. J. Wilson, A. Ormeggi and M. Narbutovskih, “Fracture testing of silicon microcantilever beams,” Journal of Applied Physics, vol. 79, pp. 2386–2393, 1996.
[72]C. J. Wilson and P. A. Beck, “Fracture testing of bulk silicon microcantilever beams subjected to a side load,” Journal of Microelectromechanical Systems, vol. 5, pp. 142–150, 1996.
[73]M. S. Gaither, F. W. DelRio, R. S. Gates, E. R. F. Jr. and R. F. Cook, “Strength distribution of single-crystal silicon theta-like specimens,” Scripta Materialia, vol. 63, pp. 422–425, 2010.
[74]B. B. Graham 2000, “Using an accelerometer sensor to measure human hand motion,” PhD. Thesis, Massachusetts Institute of Technology.
[75]S. L. Lai, D. Johnson and R. Westerman, “Aspect ratio dependent etching lag reduction in deep silicon etch processes,” Journal of Vacuum Science and Technology A Vacuums Surfaces and Films, vol. 24, no. 4, pp.1283–1288, 2006.
[76]S. H. G. Teo, A. Q. Liu, J. Singh and M. B. Yu, “Hole-type two-dimensional photonic crystal fabricated in silicon on insulator wafers,” Sensors and Actuators A: Physical, vol. 133, pp. 388–394, 2007.
[77]J. M.-L. Tsai, H.-Y. Chu, J. Hsieh and W. Fang, “The BELST II process for a silicon high-aspect-ratio micromaching vertical comb actuator and its applications,” Journal of Micromechanics and Microengineering, vol. 14, pp. 235–241, 2004.
[78]J-H. Lee, Y.-C. Ko, H.-M. Jeong, B.-S. Choi, J.-M. Kim and D. Y. Jeon, “SOI-based fabrication processes of the scanning mirror having vertical comb fingers,” Sensors and Actuators A: Physical, vol. 102, no. 1, pp. 11–18, 2002.
[79]M. T.-K. Hou, J.-Y. Huang, S.-S. Jiang and J. Andrew Yeh, “In-plane rotary comb-drive actuator for a variable optical attenuator,” Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 7, pp. 043015:1–043015:6, 2008.
[80]C. Chong, K. Isamoto and H. Toshiyoshi, “Optically Modulated MEMS scanning endoscope,” IEEE Photonics Technology Letters, vol. 18, no. 1, pp. 133-135, 2006.
[81]D. Yamane, W. Sun, H. Seita, S. Kawasaki, H. Fujita and H. Toshiyoshi, “A Ku-band dual-SPDT RF-MEMS switch by double-side SOI bulk micromachining,” Journal of Microelectromechanical Systems, vol. 20, pp. 1211–1221, 2011.
[82]C. Yamahata, D. Collard, B. Legrand, T. Takekawa, M. Kumemura, G. Hashiguchi and H. Fujita, “Silicon nanotweezers with subnanometer resolution for the micromanipulation of biomolecules,” Journal of Microelectromechanical Systems, vol. 17, pp. 623–631, 2008.
[83]J.-L. A.Yeh, C.-Y. Hui and N. C. Tien, “Electrostatic model for an asymmetric combdrive,” Journal of Microelectromechanical Systems, vol. 9, no. 1, pp.126-135, 2000.
[84]R. Legtenberg, A. W. Groeneveld and M. Elwenspoek, “Comb-drive actuators for large displacements,” Journal of Micromechanics and Microengineering, vol. 6, no. 3, pp. 320-329, 1996.
[85]J. Hsieh and W. Fang, “A boron etch-stop assisted lateral silicon etching process for improved high-aspect-ratio silicon micromachining and its applications,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 574-581, 2002.
[86]G. Zhou and P. Dowd, “Tilted folded-beam suspension for extending the stable travel range of comb drive actuators,” Journal of Micromechanics and Microengineering, vol. 13, no. 2, pp. 178-183, 2003.
[87]M. T.-K. Hou, G. K.-W. Huang, J.-Y. Huang, K.-M. Liao, R. Chen and J.-L. A. Yeh, “Extending displacements of comb drive actuators by adding secondary comb electrodes,” Journal of Micromechanics and Microengineering, vol. 16, no. 4, pp. 684-691, 2006.
[88]S. Kuhne, R. Blattmann and C. Hierold, “Low Temperature Fabrication Process for High-Aspect-Ratio and Multi-Compliant MEMS,” MEMS’09, Sorrento, Italy, 25-29 Jan. 2009, pp. 673-676.
[89]C.-M. Chang, S.-Y. Wang, R. Chen, J. A. Yeh and M. T. Hou, “A Comb-Drive Actuator Driven by Capacitively-Coupled-Power,” Sensors, vol. 12, no. 8, pp. 10881-10889, 2012.
[90]B. R. Donald, C. G. Levey, C. D. McGray, D. Rus and M. Sinclair, “Power delivery and locomotion of untethered microactuators,” Journal of Microelectromechanical Systems , vol. 12, no. 6, pp. 947- 959, 2003.
[91]C. Livermore, A. R. Forte, T. Lyszczarz, S. D. Umans, A. A. Ayon and J. H. Lang, “A high-power MEMS electric induction motor," Microelectromechanical Systems, ” Journal of Microelectromechanical Systems, vol. 13, no. 3, pp. 465-471, 2004.
[92]L. G. Frechette, S. F. Nagle, R. Ghodssi, S. D. Umans, M. A. Schmidt and J. H. Lang, “An electrostatic induction micromotor supported on gas-lubricated bearings,” MEMS’01, Interlaken, Switzerland, January 21-25. 2001, pp. 290-293.
[93]T. C. Neugebauer, D. J. Perreault, J. H. Lang and C. Livermore, “A six-phase multilevel inverter for MEMS electrostatic induction micromotors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 51, no. 2, pp. 49- 56, 2004.
[94]J. L. Steyn, S. H. Kendig, R.Khanna, T. M. Lyszczarz, S. D. Umans, J. U. Yoon, C. Livermore and J. H. Lang, “Generating electric power with a MEMS electroquasistatic induction turbine-generator,” MEMS’05, Miami Beach, FL, USA, Jan. 30- Feb. 3, 2005, pp. 614- 617.
[95]A Modafe, N Ghalichechian, A Frey, J H Lang and R Ghodssi, “Microball-bearing-supported electrostatic micromachines with polymer dielectric films for electromechanical power conversion,” Journal of Micromechanics and Microengineering, vol. 16, no. 9, pp. S182-S190, 2006.