研究生: |
戴良哲 Liang-Che Dai |
---|---|
論文名稱: |
RELAP5-3D程式對輕水式電廠圍阻體的模擬能力之探討與驗證 Applicability Study and Assessment for RELAP5-3D Light Water Reactor Containment Model |
指導教授: |
白寶實
Bau-Shei Pei |
口試委員: |
楊宗祐
許文勝 苑穎瑞 陳彥旭 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 輕水式反應器的暫態與冷卻水流失事故分析程式RELAP5-3D 、通用性圍阻體熱水流分析程式GOTHIC 、Marviken全尺寸圍阻體實驗 、圍阻體 、均質及熱平衡的臨界流率模式 |
外文關鍵詞: | RELAP5-3D, GOTHIC, Marviken full scale containment test, containment, Moody HEM |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的為擴充RELAP5-3D程式的分析能力及延伸其分析應用範圍。RELAP5-3D程式主要應用於輕水式反應器的暫態與冷卻水流失事故(LOCA)的分析評估。而依據美國核能法規NUREG-0800[2],在核能電廠圍阻體及次隔間的流體沖放流率計算中,可以使用假設流體為均質及熱平衡的臨界流率模式。但是目前的RELAP5-3D程式並未提供Moody HEM臨界流率模式的選項,故在本研究進行Moody HEM臨界流率模式的植入及驗證工作,驗證結果與選定的Marviken沖放實驗數據相比相當符合,模式的使用準則也同時確立,此外Moody HEM模式與RELAP5-3D程式內建的臨界流模式比較後的結論則是Moody HEM模式至少是相當或略勝一籌,修改及驗證工作順利完成,達成擴充RELAP5-3D程式分析能力的目的。
此外RELAP5-3D程式的通用性分析能力,能廣泛使用於包含蒸汽、水、非凝結性氣體等核能或非核能系統的熱水流暫態模擬,因此本研究參考了ICONE 17的會議論文,以RELAP5-3D程式及通用性圍阻體熱水流分析程式GOTHIC一起模擬瑞典Marviken電廠的全尺寸圍阻體實驗。同時將RELAP5-3D的模擬與Marviken實驗量測值及GOTHIC程式的分析進行比對,結果三者的圍阻體重要參數之間的整體趨勢相當符合,對通洩管清除與再淹沒的現象與時間點的模擬也相當良好,數值上的差異則可視為近似。RELAP5-3D程式對抑壓式圍阻體於沖放時之複雜熱水流現象之模擬能力得到了驗證,達成延伸程式的分析應用範圍之目的。
而依據龍門電廠的設計資料建立的RELAP5-3D圍阻體系統模式,在完成圍阻體系統的獨立測試後,已植入以RELAP5-3D程式為基礎的核能電廠工程模擬器,提供圍阻體系統的重要參數,將用來評估圍阻體在事故狀態下,溫度及壓力等重要參數之變化趨勢。為本項研究之實際應用。
This study consists of two objectives. The first objective is the implementation and assessments of the Moody HEM model of RELAP5-3D code. The second objective is the applicability and assessments for RELAP5-3D light water reactor containment model.
According to the Standard Review Plan (NUREG-0800) of U.S. Nuclear Regulatory Commission, the homogeneous and thermal equilibrium critical flow model is acceptable for the containment sub-compartment pressure and temperature analysis. However, it was not built in the RELAP5-3D code. Therefore, the implementation and assessments of the Moody HEM model of RELAP5-3D code are performed in this study. After the implementation of the Moody HEM model of RELAP5-3D, three experiments of the Marviken Critical Flow Tests (CFTs) are selected as the assessment cases. The sensitivity studies and the comparisons with the RELAP5-3D built-in critical flow models are also included. The assessments of the Moody HEM model have good agreement with the test data. Also, the results of the sensitivity studies provide the model guidelines for the code users. Moreover, the results of the comparisons with the RELAP5-3D built-in critical flow models suggest that the newly implemented Moody HEM model may be slightly preferable than the other two built-in models. Thus, the first objective of this study is successfully achieved.
As for the second objective, the versatility of RELAP5-3D code implies its applications are not only limited for LOCA analysis. The inception of this study is from one of the conference thesis of ICONE 17 that simulates the selected Marviken full scale containment test with the RELAP5 code. Three of the Swedish Marviken full scale containment tests are chosen for the assessment cases for the RELAP5-3D code and advanced containment analysis GOTHIC code. The comparisons between the test data, RELAP5-3D and GOTHIC simulations show that the overall tendencies of the containment parameters are quite similar. The phenomena of the vents clearance and flooding are also simulated quite well. The comparisons of the containment parameters between the test and simulations can be considered to have moderate approximations in values. Thus, the capability of RELAP5-3D code for pressure-suppression type containment simulation is assessed and the applicable category of the code also extends. In conclusion, the second objective of this study is also achieved.
The practical application of this study is the containment system model of the Lungmen engineering simulation platform. A RELAP5-3D containment model is built with the Lungmen nuclear power plant design data and it is integrated into the simulation platform after performing the containment system stand-alone tests. Then the simulation platform can simulate the response of the containment system under the accidents or transient events.
RELAP5-3D Code Development Team, RELAP5-3D Code Manual (INEEL-EXT-98-00834, Rev. 2.4), Idaho National Laboratory, USA, 2005.
U.S. Nuclear Regulatory Commission, Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition (NUREG-0800), U.S. Nuclear Regulatory Commission, USA, 1996.
K.S. Liang, et al., “Development and Assessment of the Appendix K Version of RELAP5-3D for LOCA Licensing Analysis,” Nuclear Technology, Vol.139 No.3, 2002, pp.233-252.
Luca Facciolo & Thomas Almberger, “RELAP5 EVAULATION VS MARVIKEN FULL SCALE CONTAINMENT EXPERIMENT”, Proceedings of 17th International Conference on Nuclear Engineering, Brussels, Belgium, 2009, ICONE 17-75106.
陳彥旭等人,GOTHIC程式驗證報告,行政院原子能委員會核能研究所,台灣電力股份有限公司,中華民國,民國99年。
苑穎瑞,非穩態熱流體力學基礎與問題分析,中華民國,民國九十二年。
Numerical Applications, Inc., GOTHIC Containment Analysis Package User Manual, Version 7.2a(QA) Rev 17, Electric Power Research Institute (EPRI), USA, 2006.
Numerical Applications, Inc., GOTHIC Containment Analysis Package User Manual, Version 7.2a(QA) Rev 16, Electric Power Research Institute (EPRI), USA, 2006.
AB Atomenergi, The Marviken Full Scale Containment Experiments, Description of the Test Facility, Report MXA-1-101, AB Atomenergi, Sweden, May 1974.
AB Atomenergi, The Marviken Full Scale Containment Experiment, Second Series, Description of the Test Facility, MXB-101, AB Atomenergi, Sweden, March 1977.
AB Atomenergi, The Marviken Full Scale Containment Response Tests, Second Series, Interim Report of Summary Report, MXB-301, AB Atomenergi, Sweden, March 1977.
AB Atomenergi, The Marviken Full Scale Containment Response Tests, Second Series, Interim Report of Blowdown 17 Test Results, MXB-217, AB Atomenergi, Sweden, April 1976.
Jan-Erik Marklund, Data Comparison Report for ISP-17, An International Standard Problem Based on the Marviken Full Scale Experiment Blowdown Number 18, STUDSVIK/NR-84/466, Swedish Nuclear Power Inspectorate, Sweden, 1984.
AB Atomenergi, The Marviken Full Scale Containment Response Tests, Second Series, Blowdown 24 Results, MXB-224, Sweden, March 1977.
The Marviken Project, The Marviken Full Scale Critical Flow Tests, Volume 1: Summary Report, EPRI NP-2370, Electric Power Research Institute, USA, 1982.
L. Ericson, et al., The Marviken Full-Scale Critical Flow Test – Interim Report; Results From Test 22, MXC-222 Interim Report, MX3-87, March 1979.
U.S. Nuclear Regulatory Commission, International Agreement Report- Assessment of RELAP5/MOD2 Critical Flow Model Using Marviken Test Data 15 and 24, NUREG/IA-0086, NRC, USA, 1992.
AB Atomenergi, The Marviken Full Scale Jet Impingement Tests-Summary report, MXD-30l, AB Atomenergi, Sweden, 1982.
Liang-Che Dai, Chung-Yu Yang, et al., “Implementation and Assessment of Moody Homogeneous Equilibrium Critical Flow Model of RELAP5-3D”, Nuclear Science and Engineering, Vol.182 No.1, 2016, pp. 96-103.
Chung-Yu Yang, Liang-Che Dai, et al., “ABWR power tests simulation by using a dual RELAP5 nuclear power plant simulation platform”, Nuclear Engineering and Design, Vol.249, 2012, pp. 41-48.
台灣電力公司,進步型沸水式反應器(ABWR)訓練教材(上冊),「第二篇 第六章 一次圍阻體系統」,台灣電力公司,中華民國,民國90年。
台灣電力公司,龍門電廠 終期安全分析報告,B1,「第六章第二節 圍阻體系統」,台灣電力公司,中華民國,民國104年。