研究生: |
范振豊 Fan, Cheng-Li |
---|---|
論文名稱: |
鐵酸鉍鐵電薄膜的電性及光伏效應 Electric property and Photovoltaic behavior of ferroelectric bismuth ferrite thin films |
指導教授: |
吳振名
Wu, Jenn-Ming |
口試委員: |
陳世偉
李奕賢 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 鐵酸鉍 、光伏效應 、能隙 、鐵電 |
外文關鍵詞: | BFO, photovoltaic, band gap, ferroelectric |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要在探討鐵酸鉍(BiFeO3,BFO)薄膜在不同退火溫度、退火氣氛、緩衝層以及不同摻雜濃度下所表現出來的光伏效應,藉由各項儀器來觀察鐵酸鉍薄膜在不同情況下所表現出來的差異性,再藉由分析這些差異性來推測影響光伏效應的可能機制與原因。
本實驗的BFO薄膜以及導電緩衝層都是利用溶膠凝膠法(sol-gel method)在白金基板上鍍製。首先,先在白金基板上鍍上不同的導電緩衝層,分別為鎳酸鑭(LaNiO3,LNO)以及氧化鉍(Bi2O3),接著將BFO薄膜或摻雜釔(Y)的BYFO薄膜分別鍍在具有不同緩衝層的基板上,分別為:Pt、LNO/Pt、Bi2O3/Pt。最後,這些BFO薄膜會分別經過不同溫度或不同氣氛的退火處理。
分析的儀器分別是利用場發射電子顯微鏡來觀察表面形貌與晶粒大小,X光繞射儀來分析薄膜的結晶行為,壓電力顯微鏡觀察BFO薄膜鐵電電域的排列情況,化學分析電子能譜儀進行薄膜表面化學分析,紫外光-可見光光譜儀量測薄膜的光學性質,鐵電量測儀量測電滯曲線,太陽光模擬系統量測光伏效應,半導體分析參數儀量測漏電流行為,LCR測試儀量測在不同頻率下的介電常數與散逸因子。
實驗發現,鐵酸鉍薄膜的晶粒大小、氧空缺的出現以及結晶性的差異都會對光伏效應產生影響。晶粒大小會影響電子電洞對的擴散距離,氧空缺的出現會形成缺陷能階,促使電子電洞對傾向複合,這兩個因素都不利閉路電流的產生。較好的結晶性會有較好的電導率,不利開路電壓的提升。此外,實驗發現,透過摻雜釔可以大幅提升BFO薄膜在照光下的閉路電流,也可稍稍提升開路電壓,推測主要原因與其光學性質的改變有關。但若過量摻雜釔反而會使光伏效應減弱,推測主要原因與摻雜後薄膜結構的轉變有關。由於適量摻雜釔可以提升閉路電流進而提升開路電壓,LNO緩衝層能夠降低BFO薄膜的缺陷含量,因此將適量摻雜釔的BFO薄膜鍍在LNO緩衝層上可以同時大幅提升閉路電流與開路電壓,其光伏效應的表現是本實驗中表現最好的一組。透過其他性質的量測,發現BFO薄膜光伏效應的強弱與本實驗中所進行的電滯曲線、介電常數隨頻率變化、散逸因子隨頻率變化與漏電流量測,並無觀察到有任何明顯直接的關聯。
[1]Yuhuan Xu.,Ferroelectric Materials and Their Efficient photovoltaic. NORTH-HOLLAND 1991
[2]Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M.; Wuttig, M.; Ramesh, R., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299 (5613), 1719-1722.
[3]Ruette, B.; Zvyagin, S.; Pyatakov, A. P.; Bush, A.; Li, J. F.; Belotelov, V. I.; Zvezdin, A. K.; Viehland, D., Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order. Phys. Rev. B 2004, 69 (6).
[4]Seidel, J.; Martin, L. W.; He, Q.; Zhan, Q.; Chu, Y. H.; Rother, A.; Hawkridge, M. E.; Maksymovych, P.; Yu, P.; Gajek, M.; Balke, N.; Kalinin, S. V.; Gemming, S.; Wang, F.; Catalan, G.; Scott, J. F.; Spaldin, N. A.; Orenstein, J.; Ramesh, R., Conduction at domain walls in oxide multiferroics. Nat. Mater. 2009, 8 (3), 229-234.
[5]Hur, S. G.; Kim, T. W.; Hwang, S. J.; Choy, J. H., Influences of A- and B-site cations on the physicochernical properties of perovskite-structured A(In1/3Nb1/3B1/3)O-3 (A = Sr, Ba; B = Sn, Pb) photocatalysts. J. Photochem. Photobiol. A-Chem. 2006, 183 (1-2), 176-181.
[6]Yang, S. Y.; Seidel, J.; Byrnes, S. J.; Shafer, P.; Yang, C. H.; Rossell, M. D.; Yu, P.; Chu, Y. H.; Scott, J. F.; Ager, J. W.; Martin, L. W.; Ramesh, R., Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5 (2), 143-147.
[7]Alexe, M.; Hesse, D., Tip-enhanced photovoltaic effects in bismuth ferrite. Nat. Commun. 2011, 2.
[8]S. M. SZE., Semiconductor Devices : Physics and technology. JOHN WILEY & SONS. INC. 2001
[9]Palai, R.; Katiyar, R. S.; Schmid, H.; Tissot, P.; Clark, S. J.; Robertson, J.; Redfern, S. A. T.; Catalan, G.; Scott, J. F., beta phase and gamma-beta metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 2008, 77 (1).
[10]Gujar, T. P.; Shinde, V. R.; Lokhande, C. D., Nanocrystalline and highly resistive bismuth ferric oxide thin films by a simple chemical method. Mater. Chem. Phys. 2007, 103 (1), 142-146.
[11]Fruth, V.; Tenea, E.; Gartner, M.; Anastasescu, A.; Berger, D.; Ramer, R.; Zaharescu, M., Preparation of BiFeO3 films by wet chemical method and their characterization. J. Eur. Ceram. Soc. 2007, 27 (2-3), 937-940.
[12]Ihlefeld, J. F.; Podraza, N. J.; Liu, Z. K.; Rai, R. C.; Xu, X.; Heeg, T.; Chen, Y. B.; Li, J.; Collins, R. W.; Musfeldt, J. L.; Pan, X. Q.; Schubert, J.; Ramesh, R.; Schlom, D. G., Optical band gap of BiFeO(3) grown by molecular-beam epitaxy. Appl. Phys. Lett. 2008, 92 (14).
[13]Xu, Y.; Shen, M. R., Structure and optical properties of nanocrystalline BiFeO3 films prepared by chemical solution deposition. Mater. Lett. 2008, 62 (20), 3600-3602.
[14] Clark, S. J.; Robertson, J., Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl. Phys. Lett. 2007, 90 (13).
[15]施修正, 利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鋯鈦酸鋇薄膜的研究, 清華大學, 博士論文, 1999
[16]Yang, Y. S.; Lee, S. J.; Kim, S. H.; Chae, B. G.; Jang, M. S., Schottky barrier effects in the electronic conduction of sol-gel derived lead zirconate titanate thin film capacitors. J. Appl. Phys. 1998, 84 (9), 5005-5011.
[17]Stolichnov, I.; Tagantsev, A., Space-charge influenced injection model for conduction in Pb(ZrxTi1-x)O-3 thin films. J. Appl. Phys. 1998, 84 (6), 3216-3225.
[18]Warren, W. L.; Dimos, D.; Waser, R. M., Degradation mechanisms in ferroelectric and high-permittivity perovskites. MRS Bull. 1996, 21 (7), 40-45.
[19]Fukushima, J.; Kodaira, K.; Matsushita, T., PREPARATION OF FERROELECTRIC PZT FILMS BY THERMAL-DECOMPOSITION OF ORGANOMETALLIC COMPOUNDS. J. Mater. Sci. 1984, 19 (2), 595-598.
[20]Schwartz, R. W., Chemical solution deposition of perovskite thin films. Chem. Mat. 1997, 9 (11), 2325-2340.
[21]K. D. Budd, S. K. Dey, D. A. Payne., Sol-gel processing of PT, PZ, PZT, and PLZT thin films. Brit. Ceram. Soc. Proc. 1985 36, 107.
[22]Dey, S. K.; Budd, K. D.; Payne, D. A., THIN-FILM FERROELECTRICS OF PZT BY SOL-GEL PROCESSING. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1988, 35 (1), 80-81.
[23]Dey, S. K.; Budd, K. D.; Payne, D. A., THIN-FILM FERROELECTRICS OF PZT BY SOL-GEL PROCESSING. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1988, 35 (1), 80-81.
[24] P. K. Coffman and S. K. Dey., Structure evolution in the
PbO-ZrO2-TiO2 sol-gel system: Part I — Characterization of
prehydrolyzed precursors. J. Sol-Gel Sci. Technol. 1994,1, 251
[25]Vest, R. W.; Xu, J. J., PBTIO3 FILMS FROM METALLOORGANIC PRECURSORS. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1988, 35 (6), 711-717.
[26]Ito, Y.; Ushikubo, M.; Yokoyama, S.; Matsunaga, H.; Atsuki, T.; Yonezawa, T.; Ogi, K., New low temperature processing of sol-gel SrBi2Ta2O9 thin films. Integr. Ferroelectr. 1997, 14 (1-4), 123-131.
[27]陳三元, 強介電薄膜之液相化學法製作, 工業材料, 108, 100 ,1995
[28]Tuttle, B. A.; Schwartz, R. W., Solution deposition of ferroelectric thin films. MRS Bull. 1996, 21 (6), 49-54.
[29] Seidel, J.; Maksymovych, P.; Batra, Y.; Katan, A.; Yang, S. Y.; He, Q.; Baddorf, A. P.; Kalinin, S. V.; Yang, C. H.; Yang, J. C.; Chu, Y. H.; Salje, E. K. H.; Wormeester, H.; Salmeron, M.; Ramesh, R., Domain Wall Conductivity in La-Doped BiFeO(3). Physical Review Letters 2010, 105 (19)
[30]MARTIN A. GREEN., SOLAR CELLS: Operating Principles, Technology, and System Applications. Prentice-Hall, Inc.
[31]Catalan, G.; Scott, J. F., Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21 (24), 2463-2485.
[32]Bellakki, M. B.; Manivannan, V., Citrate-gel synthesis and characterization of yttrium-doped multiferroic BiFeO(3). J. Sol-Gel Sci. Technol. 2010, 53 (2), 184-192.
[33]Barton, D. G.; Shtein, M.; Wilson, R. D.; Soled, S. L.; Iglesia, E., Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 1999, 103 (4), 630-640.
[34]Jan Seidel, D. F., Seung-Yeul Yang, Esther Alarcón-Lladó, ; Junqiao Wu, R. R., and Joel W. Ager III, Efficient photovoltaic current generation at ferroelectric domain walls. Physical Review Letters 2011.
[35]Zhang, J.; Rutkowski, M.; Martin, L. W.; Conry, T.; Ramesh, R.; Ihlefeld, J. F.; Melville, A.; Schlom, D. G.; Brillson, L. J., Surface, bulk, and interface electronic states of epitaxial BiFeO(3) films. J. Vac. Sci. Technol. B 2009, 27 (4), 2012-2014.
[36]Imaizumi, M.; Ito, T.; Yamaguchi, M.; Kaneko, K., Effect of grain size and dislocation density on the performance of thin film polycrystalline silicon solar cells. J. Appl. Phys. 1997, 81 (11), 7635-7640.
[37]B. D. Cullity, S. R. Stock, ELEMENTS OF X-RAY DIFFRACTION, THIRD EDITION. Prentice-Hall, Inc.
[38]Wu, Y. J.; Chen, X. K.; Zhang, J.; Chen, X. J., Structural transition and enhanced magnetization in Bi1-xYxFeO3. J. Magn. Magn. Mater. 2012, 324 (7), 1348-1352.
[39]Zhang, S. T.; Zhang, Y.; Lu, M. H.; Du, C. L.; Chen, Y. F.; Liu, Z. G.; Zhu, Y. Y.; Ming, N. B.; Pan, X. Q., Substitution-induced phase transition and enhanced multiferroic properties of Bi1-xLaxFeO3 ceramics. Appl. Phys. Lett. 2006, 88 (16).
[40]Li, Y. B.; Yu, J.; Li, J. J.; Zheng, C. D.; Wu, Y. Y.; Zhao, Y. A.; Wang, M.; Wang, Y. B., Influence of Dy-doping on ferroelectric and dielectric properties in Bi1.05-xDyxFeO3 ceramics. J. Mater. Sci.-Mater. Electron. 2011, 22 (4), 323-327.
[41]Chauhan, S.; Kumar, M.; Chhoker, S.; Katyal, S. C.; Singh, H.; Jewariya, M.; Yadav, K. L., Multiferroic, magnetoelectric and optical properties of Mn doped BiFeO3 nanoparticles. Solid State Commun. 2012, 152 (6), 525-529.
[42]Yoshida, K.; Okada, Y.; Sano, N., Self-consistent simulation of intermediate band solar cells: Effect of occupation rates on device characteristics. Appl. Phys. Lett. 2010, 97 (13).
[43]Lee, Y. H.; Wu, J. M.; Chueh, Y. L.; Chou, L. J., Low-temperature growth and interface characterization of BiFeO(3) thin films with reduced leakage current. Appl. Phys. Lett. 2005, 87 (17).
[44] Tian, Z. M.; Yuan, S. L.; Wang, X. L.; Zheng, X. F.; Yin, S. Y.; Wang, C. H.; Liu, L., Size effect on magnetic and ferroelectric properties in Bi2Fe4O9 multiferroic ceramics. J. Appl. Phys. 2009, 106 (10).
[45] Ueda, K.; Tabata, H.; Kawai, T., Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin films at room temperature. Appl. Phys. Lett. 1999, 75 (4), 555-557.
[46]Kanai, T.; Ohkoshi, S.; Nakajima, A.; Watanabe, T.; Hashimoto, K., A ferroelectric ferromagnet composed of (PLZT)(x)(BiFeO3)(1-x) solid solution. Adv. Mater. 2001, 13 (7), 487-+.
[47]Singh, V. R.; Dixit, A.; Garg, A.; Agrawal, D. C., Effect of heat treatment on the structure and properties of chemical solution processed multiferroic BiFeO3 thin films. Appl. Phys. A-Mater. Sci. Process. 2008, 90 (1), 197-202.
[48]Shannigrahi, S. R.; Huang, A.; Tripathy, D.; Adeyeye, A. O., Effect of Sc substitution on the structure, electrical, and magnetic properties of multiferroic BiFeO3 thin films grown by a sol-gel process. J. Magn. Magn. Mater. 2008, 320 (18), 2215-2220.
[49]Shannigrahi, S. R.; Huang, A.; Chandrasekhar, N.; Tripathy, D.; Adeyeye, A. O., Sc modified multiferroic BiFeO3 thin films prepared through a sol-gel process. Appl. Phys. Lett. 2007, 90 (2)
[50]Wu, J. G.; Wang, J., Improved ferroelectric behavior in (110) oriented BiFeO3 thin films. J. Appl. Phys. 2010, 107 (3).
[51] 鐘金鋒, 化學液相法製備BiFeO3氧化物薄膜, 清華大學, 碩士論文, 2006
[52] Zang, Y. Y.; Xie, D.; Chen, Y.; Wu, X.; Ren, T. L.; Wei, J. Q.; Zhu, H. W.; Plant, D., Electrical and thermal properties of a carbon nanotube/polycrystalline BiFeO3/Pt photovoltaic heterojunction with CdSe quantum dots sensitization. Nanoscale 2012, 4 (9), 2926-2930.
[53]李奕賢, 鐵酸鉍複鐵式薄膜之晶體成長與分析, 清華大學, 博士論文, 2005
[54]陳世偉, 氧化鋅奈米柱及鐵酸鉍包覆氧化鋅奈米柱殼/核結構成長機制及特性研究, 清華大學, 博士論文2011
[55] Dai, H. Y.; Li, T.; Xue, R. Z.; Chen, Z. P.; Xue, Y. C., Effects of Europium Substitution on the Microstructure and Electric Properties of Bismuth Ferrite Ceramics. J. Supercond. Nov. Magn 2012, 25 (1), 109-115.