簡易檢索 / 詳目顯示

研究生: 李怡萱
Li, Yi-Hsuan
論文名稱: 訊息蛋白SH2B1β藉由影響細胞黏著調控神經生長因子在PC12細胞誘發之神經軸突生長
The Adaptor Protein SH2B1β Regulates NGF-induced Neurite Outgrowth in PC12 Cells Through Modulating Cell Adhesion
指導教授: 陳令儀
Linyi Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 73
中文關鍵詞: 神經生長因子細胞黏著神經軸突生長SH2B1betaPC12 細胞
外文關鍵詞: SH2B1beta, NGF, PC12 cells, cell adhesion, neurite outgrowth
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Neuronal precursor cells are differentiated into functional neurons during embryonic development. Various processes regulate neuronal differentiation, including signal transduction, gene expression, and cell adhesion. PC12 cell line is a well-established model for studying neuronal differentiation. After nerve growth factor (NGF) treatment, activation of the receptor tropomyosin-related kinase A (TrkA) induces downstream signaling such as mitogen-activated protein kinases (MAPK) cascade, phosphatidylinositol 3 kinase (PI3K)-Akt, phospholipase C gamma (PLCγ) and ultimately leads to neurite outgrowth in PC12 cells. Our previous results have shown that SH2B1β-overexpressing PC12 cells (PC12-SH2B1β cells) enhance neurite outgrowth compared with control PC12 cells (PC12-GFP cells). On the other hand, cells overexpressing the dominant negative form of SH2B1β [PC12-SH2B1β(R555E) cells] significantly reduce NGF-induced neuronal differentiation. Nevertheless, the effect of SH2B1β on NGF-induced neurite outgrowth is solely on MAPK, PI3K-Akt and PLCγ signaling because PC12-SH2B1β(R555E) cells do not inhibit NGF initiated signaling pathways. Interestingly, we have found that PC12-SH2B1β(R555E) cells show much more aggregated phenotype than PC12-SH2B1β and PC12-GFP cells. This result reveals the possibility that SH2B1β may regulate NGF-induced neuronal differentiation by modulating cell adhesion. In line with this finding, our preliminary results suggest a subset of NGF responsive genes including N-cadherin, which participates in cell-cell adhesion, is differentially regulated by SH2B1β and SH2B1β(R555E). This thesis investigated the possible mechanisms by which SH2B1β and SH2B1β(R555E) would regulate NGF-induced neurite outgrowth. The data in this thesis suggest that overexpressing SH2B1β□reduces the expression of N-cadherin and its binding to β-catenin. Moreover, overexpressing SH2B1β□also□increases the phosphorylation of β-catenin on Y654, and disrupts the association between N-cadherin and β-catenin. Furthermore, in response to NGF, SH2B1β□stabilizes the interaction between N-cadherin and β-catenin likely through modulating cyclin-dependent kinase 5 (CDK5) and Src kinase and thus downregulating the level of pβ-catenin (Y654). In contrast, in the absence of NGF, overexpressing SH2B1β(R555E) increases the expression of N-cadherin and its binding to β-catenin through inhibiting the phosphorylation of β-catenin on Y654. Taken together, the data in this thesis suggest that overexpressing SH2B1β downregulates the N-cadherin-β-catenin complex in the absence of NGF to allow faster neurite initiation, but increases the complex formation in response to NGF likely to facilitate cell-cell communication during neuronal differentiation. On the contrary, overexpressing SH2B1β(R555E) increases the interaction between N-cadherin and β-catenin and ultimately blocks neurite outgrowth.


    謝誌...............................................I Abstract...........................................II 中文摘要...........................................IV Index..............................................VI Abbreviations......................................VIII Introduction.......................................1 Materials and Methods..............................12 Reagents...........................................12 Cell culture and drug treatment....................14 Western Blotting...................................15 Co-immunoprecipitation.............................16 Immunostaining.....................................18 Total RNA extraction...............................18 Reverse transcription and semi-quantitative real time polymerase chain reaction..........................19 Statistical analysis...............................20 Results............................................22 SH2B1β and SH2B1β(R555E) differentially regulate the expression of N-cadherin...........................22 SH2B1β and SH2B1β(R555E) differentially affect NGF-induced β-catenin levels and the interaction between β-catenin and N-cadherin.........................................23 SH2B1β is not in the N-cadherin-β-catenin complex..27 ADAM10 probably does not play a major role in regulating N-cadherin stability in PC12-SH2B1β cells............27 Src and CDK5 regulate the interaction between N-cadherin and β-catenin......................................28 The working model for the role of SH2B1β and SH2B1β(R555E) in regulating N-cadherin-β-catenin complex during NGF-induced neurite outgrowth in PC12 cells............31 Discussion.........................................33 References.........................................38 Figures............................................42 Fig.1 SH2B1β and SH2B1β(R555E) differentially regulate the expression of N-cadherin...........................42 Fig.2 SH2B1β and SH2B1β(R555E) differentially regulate the expression of β-catenin............................44 Fig.3 The cellular localization of N-cadherin and β-catenin among PC12-GFP, PC12-SH2B1β□and PC12-SH2B1β(R555E) cells......................................46 Fig.4 SH2B1β enhances the association between N-cadherin and β-catenin in response to NGF...................48 Fig.5 The expression of ADAM10 in PC12-GFP, PC12-SH2B1β and PC12-SH2B1β(R555E) cells.......................50 Fig.6 Src does not bind to N-cadherin in PC12 cells.51 Fig.7 SH2B1β□and SH2B1β(R555E) regulate the binding of β-catenin to the CDK5-p35 complex....................52 Fig.8 Role of CDK5 and Src in the phosphorylation of β-catenin on Y654....................................55 Fig.9 CDK5 and Src regulate the binding between N-cadherin and β-catenin......................................56 Fig.10 The working model for the role of SH2B1β□and SH2B1β(R555E) in regulating N-cadherin-β-catenin complex during NGF-induced neuronal differentiation in PC12 cells.58 Tables.............................................59 Table 1. Reverse transcription protocol used in this thesis.............................................59 Table 2. Reaction temperature and time of reverse transcription......................................60 Table 3. Sequences of the Q-PCR primers used in this thesis.............................................61 Table 4. Reaction temperature and time of Q-PCR....62 Appendix...........................................63 Fig. A1 The cellular localization of β-catenin in PC12-SH2B1β□cells distributes in both the cytoplasm and the nuclei after LiCl treatment........................63 Fig. A2 The induced fold of luciferase activity after LiCl treatment is the strongest in PC12-SH2B1β□cells...65 Fig. A3 The cellular localization of pβ-catenin(Y654) in PC12-GFP, PC12-SH2B1β□and PC12-SH2B1β(R555E) cells.67 Fig. A4 The nuclear fraction of CTF2 in the PC12-GFP, PC12-SH2B1β□and PC12-SH2B1β(R555E) cells ...............68 Fig. A5 The expression of L1cam is reduced by overexpressing SH2B1β but increased by overexpressing SH2B1β(R555E)...........................................70 References for Appendix............................73

    1.Wang, X., Chen, L., Maures, T. J., Herrington, J., and Carter-Su, C. (2004) J Biol Chem 279, 133-141
    2.Lin, W. F., Chen, C. J., Chang, Y. J., Chen, S. L., Chiu, I. M., and Chen, L. (2009) Cell Signal 21, 1060-1072
    3.Maures, T. J., Kurzer, J. H., and Carter-Su, C. (2007) Trends Endocrinol Metab 18, 38-45
    4.Duan, C., Yang, H., White, M. F., and Rui, L. (2004) Mol Cell Biol 24, 7435-7443
    5.Ren, D., Li, M., Duan, C., and Rui, L. (2005) Cell Metab 2, 95-104
    6.Li, M., Ren, D., Iseki, M., Takaki, S., and Rui, L. (2006) Endocrinology 147, 2163-2170
    7.Ohtsuka, S., Takaki, S., Iseki, M., Miyoshi, K., Nakagata, N., Kataoka, Y., Yoshida, N., Takatsu, K., and Yoshimura, A. (2002) Mol Cell Biol 22, 3066-3077
    8.Qian, X., Riccio, A., Zhang, Y., and Ginty, D. D. (1998) Neuron 21, 1017-1029
    9.Rui, L., Mathews, L. S., Hotta, K., Gustafson, T. A., and Carter-Su, C. (1997) Mol Cell Biol 17, 6633-6644
    10.Rui, L., Herrington, J., and Carter-Su, C. (1999) J Biol Chem 274, 10590-10594
    11.Herrington, J., Diakonova, M., Rui, L., Gunter, D. R., and Carter-Su, C. (2000) J Biol Chem 275, 13126-13133
    12.Zhang, Y., Zhu, W., Wang, Y. G., Liu, X. J., Jiao, L., Liu, X., Zhang, Z. H., Lu, C. L., and He, C. (2006) J Cell Sci 119, 1666-1676
    13.Chao, M. V., Rajagopal, R., and Lee, F. S. (2006) Clin Sci (Lond) 110, 167-173
    14.Schramm, A., Schulte, J. H., Astrahantseff, K., Apostolov, O., Limpt, V., Sieverts, H., Kuhfittig-Kulle, S., Pfeiffer, P., Versteeg, R., and Eggert, A. (2005) Cancer Lett 228, 143-153
    15.Chen, L., Maures, T. J., Jin, H., Huo, J. S., Rabbani, S. A., Schwartz, J., and Carter-Su, C. (2008) Mol Endocrinol 22, 454-476
    16.Huang, E. J., and Reichardt, L. F. (2003) Annu Rev Biochem 72, 609-642
    17.Rui, L., Herrington, J., and Carter-Su, C. (1999) J Biol Chem 274, 26485-26492
    18.Maures, T. J., Chen, L., and Carter-Su, C. (2009) Mol Endocrinol
    19.Maness, P. F., and Schachner, M. (2007) Nat Neurosci 10, 19-26
    20.Nollet, F., Kools, P., and van Roy, F. (2000) J Mol Biol 299, 551-572
    21.Takeichi, M. (2007) Nat Rev Neurosci 8, 11-20
    22.Suzuki, S. C., and Takeichi, M. (2008) Dev Growth Differ 50 Suppl 1, S119-130
    23.Thornton, M. R., Shawcross, S. G., Mantovani, C., Kingham, P. J., Birchall, M. A., and Terenghi, G. (2008) Biotechnol Appl Biochem 49, 165-174
    24.Redies, C. (2000) Prog Neurobiol 61, 611-648
    25.Patel, S. D., Chen, C. P., Bahna, F., Honig, B., and Shapiro, L. (2003) Curr Opin Struct Biol 13, 690-698
    26.Grunwald, G. B., Pratt, R. S., and Lilien, J. (1982) J Cell Sci 55, 69-83
    27.Shoval, I., Ludwig, A., and Kalcheim, C. (2007) Development 134, 491-501
    28.Radice, G. L., Rayburn, H., Matsunami, H., Knudsen, K. A., Takeichi, M., and Hynes, R. O. (1997) Dev Biol 181, 64-78
    29.Kadowaki, M., Nakamura, S., Machon, O., Krauss, S., Radice, G. L., and Takeichi, M. (2007) Dev Biol 304, 22-33
    30.Koch, A. W., Manzur, K. L., and Shan, W. (2004) Cell Mol Life Sci 61, 1884-1895
    31.Leckband, D., and Prakasam, A. (2006) Annu Rev Biomed Eng 8, 259-287
    32.Pertz, O., Bozic, D., Koch, A. W., Fauser, C., Brancaccio, A., and Engel, J. (1999) EMBO J 18, 1738-1747
    33.Gumbiner, B. M. (1996) Cell 84, 345-357
    34.Perez-Moreno, M., Jamora, C., and Fuchs, E. (2003) Cell 112, 535-548
    35.Noles, S. R., and Chenn, A. (2007) Mol Cell Neurosci 35, 549-558
    36.Toledo, E. M., Colombres, M., and Inestrosa, N. C. (2008) Prog Neurobiol 86, 281-296
    37.Hansen, S. M., Berezin, V., and Bock, E. (2008) Cell Mol Life Sci 65, 3809-3821
    38.Reiss, K., Maretzky, T., Ludwig, A., Tousseyn, T., de Strooper, B., Hartmann, D., and Saftig, P. (2005) EMBO J 24, 742-752
    39.Uemura, K., Kuzuya, A., Aoyagi, N., Ando, K., Shimozono, Y., Ninomiya, H., Shimohama, S., and Kinoshita, A. (2007) Neuroscience 145, 5-10
    40.Blobel, C. P. (2000) Curr Opin Cell Biol 12, 606-612
    41.Schlondorff, J., and Blobel, C. P. (1999) J Cell Sci 112 ( Pt 21), 3603-3617
    42.Seals, D. F., and Courtneidge, S. A. (2003) Genes Dev 17, 7-30
    43.Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C., and Fahrenholz, F. (1999) Proc Natl Acad Sci U S A 96, 3922-3927
    44.Hartmann, D., de Strooper, B., Serneels, L., Craessaerts, K., Herreman, A., Annaert, W., Umans, L., Lubke, T., Lena Illert, A., von Figura, K., and Saftig, P. (2002) Hum Mol Genet 11, 2615-2624
    45.Hundhausen, C., Misztela, D., Berkhout, T. A., Broadway, N., Saftig, P., Reiss, K., Hartmann, D., Fahrenholz, F., Postina, R., Matthews, V., Kallen, K. J., Rose-John, S., and Ludwig, A. (2003) Blood 102, 1186-1195
    46.Sahin, U., Weskamp, G., Kelly, K., Zhou, H. M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P., and Blobel, C. P. (2004) J Cell Biol 164, 769-779
    47.Maretzky, T., Reiss, K., Ludwig, A., Buchholz, J., Scholz, F., Proksch, E., de Strooper, B., Hartmann, D., and Saftig, P. (2005) Proc Natl Acad Sci U S A 102, 9182-9187
    48.Marambaud, P., Wen, P. H., Dutt, A., Shioi, J., Takashima, A., Siman, R., and Robakis, N. K. (2003) Cell 114, 635-645
    49.Uemura, K., Kihara, T., Kuzuya, A., Okawa, K., Nishimoto, T., Bito, H., Ninomiya, H., Sugimoto, H., Kinoshita, A., and Shimohama, S. (2006) Biochem Biophys Res Commun 345, 951-958
    50.Parisiadou, L., Fassa, A., Fotinopoulou, A., Bethani, I., and Efthimiopoulos, S. (2004) Neurodegener Dis 1, 184-191
    51.Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M., and Tsai, L. H. (2000) Curr Biol 10, 363-372
    52.Qi, J., Wang, J., Romanyuk, O., and Siu, C. H. (2006) Mol Biol Cell 17, 1261-1272
    53.Tsai, L. H., Takahashi, T., Caviness, V. S., Jr., and Harlow, E. (1993) Development 119, 1029-1040
    54.Lew, J., Huang, Q. Q., Qi, Z., Winkfein, R. J., Aebersold, R., Hunt, T., and Wang, J. H. (1994) Nature 371, 423-426
    55.Tsai, L. H., Delalle, I., Caviness, V. S., Jr., Chae, T., and Harlow, E. (1994) Nature 371, 419-423
    56.Ohshima, T., Ward, J. M., Huh, C. G., Longenecker, G., Veeranna, Pant, H. C., Brady, R. O., Martin, L. J., and Kulkarni, A. B. (1996) Proc Natl Acad Sci U S A 93, 11173-11178
    57.Chae, T., Kwon, Y. T., Bronson, R., Dikkes, P., Li, E., and Tsai, L. H. (1997) Neuron 18, 29-42
    58.Nikolic, M., Dudek, H., Kwon, Y. T., Ramos, Y. F., and Tsai, L. H. (1996) Genes Dev 10, 816-825
    59.Paglini, G., Pigino, G., Kunda, P., Morfini, G., Maccioni, R., Quiroga, S., Ferreira, A., and Caceres, A. (1998) J Neurosci 18, 9858-9869
    60.Connell-Crowley, L., Le Gall, M., Vo, D. J., and Giniger, E. (2000) Curr Biol 10, 599-602
    61.Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., and Tsai, L. H. (1999) Nature 402, 615-622
    62.Ahlijanian, M. K., Barrezueta, N. X., Williams, R. D., Jakowski, A., Kowsz, K. P., McCarthy, S., Coskran, T., Carlo, A., Seymour, P. A., Burkhardt, J. E., Nelson, R. B., and McNeish, J. D. (2000) Proc Natl Acad Sci U S A 97, 2910-2915
    63.Lee, M. S., Kwon, Y. T., Li, M., Peng, J., Friedlander, R. M., and Tsai, L. H. (2000) Nature 405, 360-364
    64.Sun, D., Leung, C. L., and Liem, R. K. (1996) J Biol Chem 271, 14245-14251
    65.Paudel, H. K., Lew, J., Ali, Z., and Wang, J. H. (1993) J Biol Chem 268, 23512-23518
    66.Fletcher, A. I., Shuang, R., Giovannucci, D. R., Zhang, L., Bittner, M. A., and Stuenkel, E. L. (1999) J Biol Chem 274, 4027-4035
    67.Bibb, J. A., Snyder, G. L., Nishi, A., Yan, Z., Meijer, L., Fienberg, A. A., Tsai, L. H., Kwon, Y. T., Girault, J. A., Czernik, A. J., Huganir, R. L., Hemmings, H. C., Jr., Nairn, A. C., and Greengard, P. (1999) Nature 402, 669-671
    68.Lee, K. Y., Helbing, C. C., Choi, K. S., Johnston, R. N., and Wang, J. H. (1997) J Biol Chem 272, 5622-5626
    69.Kesavapany, S., Lau, K. F., McLoughlin, D. M., Brownlees, J., Ackerley, S., Leigh, P. N., Shaw, C. E., and Miller, C. C. (2001) Eur J Neurosci 13, 241-247
    70.Dhavan, R., and Tsai, L. H. (2001) Nat Rev Mol Cell Biol 2, 749-759
    71.Schuman, E. M., and Murase, S. (2003) Philos Trans R Soc Lond B Biol Sci 358, 749-756
    72.Rhee, J., Buchan, T., Zukerberg, L., Lilien, J., and Balsamo, J. (2007) Nat Cell Biol 9, 883-892
    73.Matsuyoshi, N., Hamaguchi, M., Taniguchi, S., Nagafuchi, A., Tsukita, S., and Takeichi, M. (1992) J Cell Biol 118, 703-714
    74.Behrens, J., Vakaet, L., Friis, R., Winterhager, E., Van Roy, F., Mareel, M. M., and Birchmeier, W. (1993) J Cell Biol 120, 757-766
    75.Hamaguchi, M., Matsuyoshi, N., Ohnishi, Y., Gotoh, B., Takeichi, M., and Nagai, Y. (1993) EMBO J 12, 307-314
    76.Chen, Q., Chen, T. J., Letourneau, P. C., Costa Lda, F., and Schubert, D. (2005) J Neurosci 25, 281-290
    77.Lee, H. S., and Tomarev, S. I. (2007) Exp Cell Res 313, 98-108
    78.Drazba, J., Liljelund, P., Smith, C., Payne, R., and Lemmon, V. (1997) Brain Res Dev Brain Res 100, 183-197
    79.Cavallaro, U., and Christofori, G. (2004) Nat Rev Cancer 4, 118-132
    80.Kato, G., and Maeda, S. (1999) J Biochem 126, 957-961
    81.Sanchez-Heras, E., Howell, F. V., Williams, G., and Doherty, P. (2006) J Biol Chem 281, 35208-35216
    82.Fukata, M., and Kaibuchi, K. (2001) Nat Rev Mol Cell Biol 2, 887-897
    83.Derycke, L. D., and Bracke, M. E. (2004) Int J Dev Biol 48, 463-476
    84. Danton H. O’Day, University of Toronto at Mississauga, 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE