簡易檢索 / 詳目顯示

研究生: 張尹
Chang, Yin
論文名稱: Multi-scale Structural Characterization and Mechanical Evaluation of Protective Bio-composites: Inspirations from Cobra Snake and Chinese Striped-neck Turtle Eggshells
眼鏡蛇與斑龜蛋殼之啟發及應用:防禦性生物複合材料之多尺度結構分析及機械性質研究
指導教授: 陳柏宇
Chen, Po-Yu
口試委員: 王子威
Wang, Tzu-Wei
張書瑋
Chang, Shu-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 146
中文關鍵詞: 仿生軟性甲冑多階層結構複合材料機械性質韌化機制
外文關鍵詞: Bio-inspiration, Flexible armor, Hierarchical structure, Composites, Mechanical properties, Toughening mechanisms
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 斑龜蛋殼和眼鏡蛇蛋殼都是由成分相似的角質蛋白組成卻擁有截然不同的機械性質:斑龜蛋殼堅韌且強硬,蛇蛋殼卻極具延展性並且有媲美彈性蛋白的變形回復能力。大自然利用複雜、多樣的堆疊方式連結這些相似、簡單的基本組成素材,創造出多元、獨特的生物材料機械特性。此研究從材料科學之觀點出發,探討此兩種爬蟲類革質蛋殼在多尺度下的結構與其機械性能。結合生物組織染色與光學顯微鏡觀測比較蛋白質在蛋殼中的分布情形。利用反射式遠紅外線光譜分析自兩種蛋殼抽取出的角蛋白成分發現其具有相似的角蛋白濃度與二級結構組成,確認兩者蛋白質成分極為相似。由掃描式電子顯微鏡的觀測得知,蛇蛋殼是由三層不同排列方式的角蛋白和一層膠原蛋白薄層組成;而龜蛋殼則是單一夾板狀結構排列。兩類蛋殼礦化程度皆由外向內遞減,呈現漸層式的組成與機械性質。對照拉伸、破斷、循環測試與反射式遠紅外線光譜分析結果發現蛇蛋殼結構能提升其塑性與延展度,而龜蛋殼的結構設計能使其具備高彈性模數、降伏強度、拉伸強度。
    蛋殼雖然要足夠強韌以保護幼兒,但同時要能讓幼兒順利破開孵化。龜蛋殼與蛇蛋殼兩者迥異的機械特性,也讓他們的幼兒演化出不同的破蛋策略。透過穿刺測試與對照斑龜尖錐狀卵齒結構,我們成功發現從外部穿刺斑龜蛋殼相對費力,卻有利於斑龜幼兒可以從內省力地破開蛋殼。眼鏡蛇蛋內層大量的刮痕與刀片狀的卵齒,暗示其較有可能利用重複刮磨蛋殼的破蛋機制,來突破此高度變形能力的蛋殼。
    透過觀察與比較兩種爬蟲類革質蛋殼的結構與機械特性,學習他們不同的強化機制,將啟發我們設計出新一代輕型、強韌的高分子材料,或是可調式、多功能機械性質的複合材料。並可以進一步運用在軟性基板、封裝工程,與生醫材料等領域。


    Turtle eggshells and snake eggshells are both composed of keratin yet exhibit distinctly different mechanical properties. Under deformation, turtle eggshells behave as typical keratin which is stiff and strong while snake eggshells behave as elastin that is extensible and reversible. It is interesting to know how nature uses the same building block but mergers structure in different ways to achieve unique mechanical properties. In this study, the structural and mechanical design of eggshells of cobra snake (Naja atra) and Chinese striped-neck turtle (Ocadia sinensis) are investigated and compared. Hierarchical structure is observed by optical microscopy and FE-SEM. Crystalline minerals are analyzed by X-ray diffraction and compositions are confirmed by tissue staining methods and EDS. Results of tensile test, fracture test, and cyclic test are analyzed in combination with ATR-FTIR examination. Various toughening mechanisms are unveiled: Snake eggshell exhibits structural enhanced plasticity and extensibility while turtle eggshell is plywood structural promoted stiffness and strength.
    Dual functions are performed by both reptilian eggshells that protect hatchlings from outer attacks and enable them to break the eggshells easily from inside. However, the structure and mechanical responses of the two eggshells are so different that they evolve unique structures and strategies to break the eggshells. The directionally-dependent penetration resistance of the turtle eggshell and the sharp, cone-liked egg tooth of baby turtle successfully serve as protection from outside but enable effective penetration from inside. Plenty of scratch channels in the inner membrane of snake eggshell and the blade-liked egg tooth imply a repeated slicing strategy adopted by baby snake to break through the ductile eggshell.
    Inspirations from the structural and mechanical designs of two reptilian eggshells may lead to the novel synthesis of tough, extensible, lightweight polymer-based composites which can be applied in advanced flexible devices, packaging and bio-medical fields.

    Ch 1 Introduction...1 1.1 Background.....1 1.1.1 Characteristics of Biological Materials...1 1.1.2 Hierarchical Structure...3 1.1.3 R-curve Behavior and Toughening Mechanisms......4 1.1.4 Bio-compatible Polymers with Biology Moieties...6 1.2 Motivations and Goals....7 Ch 2 Literature Review.......14 2.1 Natural Armors..........14 2.1.1 Flexible Dermal Armors..15 2.2 Amniotes Eggshells......19 2.2.1 Significance in Evolution...19 2.2.2 Adaptation Strategies to Terrestrial...19 2.2.3 Reptilian Eggshell......20 2.3 Keratin.................23 2.3.1 Hierarchical Structure of alpha and beta-keratin...23 2.3.2 Mechanical Properties of Keratin.......24 2.3.3 Water Sorption and Desorption..........27 2.4 Fracture Mechanics of Thin Sheet.......30 2.5 Biodegradable Scaffold for Tissue Engineering.....................34 Ch 3 Experimental Procedure.................55 3.1 Sample Preparation and Treatment.......55 3.2 Compositional Analysis.................55 3.2.1 Protein Type Specification.............55 3.2.2 X-ray Diffraction......................56 3.2.3 Energy-Dispersive Spectroscopy.........57 3.3 Structural Characterization............57 3.3.1 Optical Microscopy.....................57 3.3.2 Scanning Electron Microscopy...........57 3.4 Mechanical Testing.....................58 3.4.1 Tensile Testing.......58 3.4.2 Cyclic Testing........59 3.4.3 Fracture Testing......59 3.4.4 Penetration Testing...60 3.4.5 Scratch Testing.......60 3.5 PLLA-SEP Fabrication and Cytotoxicity Testing..61 Ch 4 Results and Discussion...67 4.1 Hierarchical Structure...67 4.1.1 Snake Eggshell........67 4.1.2 Turtle Eggshell.......69 4.2 Mechanical Behavior...72 4.2.1 Tensile Properties....72 4.2.2 Cyclic Test...........78 4.2.3 Fracture Test.........78 4.2.4 Penetration Test......84 4.2.5 Scratch Test..........86 4.3 Characteristics of PLLA-SEP Composite...88 4.3.1 Cytotoxicity Testing.......88 4.3.2 Water Absorption Testing...88 4.3.3 Hydrolytic Degradation.....89 4.3.4 Mechanical Properties of PLLA-SEP Composite....90 Ch 5 Conclusions...............117 Ch 6 Future Work...............123 6.1 Quantitative Analysis of Fracture Toughness...123 6.1.1 Experimental Methods for Fracture Mechanics...124 6.1.2 Calculation and Interpretation of Results.....125 6.2 Wear Resistance...........126 6.3 Improvement of Bio-composites and Applications..........128 References........................133

    1. Chen, P.Y., et al., Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater, 2008. 1(3): p. 208-26.
    2. Chen, P.-Y., J. McKittrick, and M.A. Meyers, Biological materials: Functional adaptations and bioinspired designs. Progress in Materials Science, 2012. 57(8): p. 1492-1704.
    3. Dunlop, J.W.C. and P. Fratzl, Biological Composites. Annual Review of Materials Research, 2010. 40(1): p. 1-24.
    4. Fratzl, P. and R. Weinkamer, Nature's hierarchical materials. Progress in Materials Science, 2007. 52(8): p. 1263-1334.
    5. Liu, K. and L. Jiang, Bio-inspired design of multiscale structures for function integration. Nano Today, 2011. 6(2): p. 155-175.
    6. Fan, T.-X., S.-K. Chow, and D. Zhang, Biomorphic mineralization: From biology to materials. Progress in Materials Science, 2009. 54(5): p. 542-659.
    7. Barthelat, F., et al., On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. Journal of the Mechanics and Physics of Solids, 2007. 55(2): p. 306-337.
    8. Bhushan, B., Biomimetics: lessons from nature--an overview. Philos Trans A Math Phys Eng Sci, 2009. 367(1893): p. 1445-86.
    9. Fratzl, P., Biomimetic materials research: what can we really learn from nature's structural materials? J R Soc Interface, 2007. 4(15): p. 637-42.
    10. Arzt, E., Biological and artificial attachment devices: Lessons for materials scientists from flies and geckos. Materials Science and Engineering: C, 2006. 26(8): p. 1245-1250.
    11. Wegst, U.G.K. and M.F. Ashby, The mechanical efficiency of natural materials. Philosophical Magazine, 2004. 84(21): p. 2167-2186.
    12. Launey, M.E., M.J. Buehler, and R.O. Ritchie, On the Mechanistic Origins of Toughness in Bone. Annual Review of Materials Research, 2010. 40(1): p. 25-53.
    13. Ritchie, R.O., The conflicts between strength and toughness. Nat Mater, 2011. 10(11): p. 817-22.
    14. Cölfen, H., Biomineralization: a crystal-clear view. Nature materials, 2010. 9(12): p. 960-961.
    15. Mann, S., Biomineralization: principles and concepts in bioinorganic materials chemistry. Vol. 5. 2001: Oxford University Press.
    16. Zimmermann, E.A., M.E. Launey, and R.O. Ritchie, The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone. Biomaterials, 2010. 31(20): p. 5297-5305.
    17. Launey, M.E., et al., Mechanistic aspects of the fracture toughness of elk antler bone. Acta biomaterialia, 2010. 6(4): p. 1505-1514.
    18. Yang, W., et al., Structure and fracture resistance of alligator gar (Atractosteus spatula) armored fish scales. Acta Biomater, 2013. 9(4): p. 5876-89.
    19. Fatigue, A.I.C.E.o. and Fracture, ASTM E1820 - 01 Standard Test Method for Measurement of Fracture Toughness. 2001, ASTM International: West Conshohocken, PA.
    20. Ritchie, R.O., Mechanisms of fatigue-crack propagation in ductile and brittle solids. International Journal of Fracture, 1999. 100(1): p. 55-83.
    21. Weiner, S. and H.D. Wagner, The material bone: structure-mechanical function relations. Annual Review of Materials Science, 1998. 28(1): p. 271-298.
    22. Lydon, M.J., T.W. Minett, and B.J. Tighe, Cellular interactions with synthetic polymer surfaces in culture. Biomaterials, 1985. 6(6): p. 396-402.
    23. Sashiwa, H., et al., Chemical modification of chitosan: preparation and lectin binding properties of alpha-galactosyl-chitosan conjugates. Potential inhibitors in acute rejection following xenotransplantation. Biomacromolecules, 2000. 1(3): p. 303-5.
    24. Chapman, R.G., et al., Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir, 2001. 17(4): p. 1225-1233.
    25. Khang, G., et al., Interaction of different types of cells on physicochemically treated poly (L‐lactide‐co‐glycolide) surfaces. Journal of applied polymer science, 2002. 85(6): p. 1253-1262.
    26. Schamberger, P.C., J.I. Abes, and J.A. Gardella Jr, Surface chemical studies of aging and solvent extraction effects on plasma-treated polystyrene. Colloids and Surfaces B: Biointerfaces, 1994. 3(4): p. 203-215.
    27. Koyano, T., et al., Attachment and growth of cultured fibroblast cells on PVA/chitosan‐blended hydrogels. Journal of biomedical materials research, 1998. 39(3): p. 486-490.
    28. Wang, Y.D., et al., A tough biodegradable elastomer. Nature Biotechnology, 2002. 20(6): p. 602-606.
    29. Espinosa, H.D., et al., Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat Commun, 2011. 2: p. 173.
    30. Kamat, S., et al., Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature, 2000. 405(6790): p. 1036-40.
    31. Raabe, D., C. Sachs, and P. Romano, The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Materialia, 2005. 53(15): p. 4281-4292.
    32. Taylor, J.R. and S.N. Patek, Ritualized fighting and biological armor: the impact mechanics of the mantis shrimp's telson. J Exp Biol, 2010. 213(Pt 20): p. 3496-504.
    33. Bruet, B.J., et al., Materials design principles of ancient fish armour. Nature materials, 2008. 7(9): p. 748-756.
    34. Zhu, D., et al., Structure and Mechanical Performance of a “Modern” Fish Scale. Advanced Engineering Materials, 2012. 14(4): p. B185-B194.
    35. Zhu, D., F. Vernerey, and F. Barthelat, The Mechanical Performance of Teleost Fish Scales. 2011: p. 117-123.
    36. Achrai, B. and H.D. Wagner, Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. Acta Biomater, 2013. 9(4): p. 5890-902.
    37. Damiens, R., et al., Compressive behavior of a turtle's shell: experiment, modeling, and simulation. J Mech Behav Biomed Mater, 2012. 6: p. 106-12.
    38. Krauss, S., et al., Mechanical Function of a Complex Three-Dimensional Suture Joining the Bony Elements in the Shell of the Red-Eared Slider Turtle. Advanced Materials, 2009. 21(4): p. 407-412.
    39. Rhee, H., M.F. Horstemeyer, and A. Ramsay, A study on the structure and mechanical behavior of the Dasypus novemcinctus shell. Materials Science and Engineering: C, 2011. 31(2): p. 363-369.
    40. Currey, J.D., Mechanical properties and adaptations of some less familiar bony tissues. J Mech Behav Biomed Mater, 2010. 3(5): p. 357-72.
    41. Yang, W., et al., Natural flexible dermal armor. Advanced Materials, 2013. 25(1): p. 31-48.
    42. Weiner, S. and L. Addadi, Biomineralization. At the cutting edge. Science, 2002. 298(5592): p. 375-6.
    43. Ikoma, T., et al., Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J Struct Biol, 2003. 142(3): p. 327-33.
    44. Chen, I.H., et al., Armadillo armor: mechanical testing and micro-structural evaluation. J Mech Behav Biomed Mater, 2011. 4(5): p. 713-22.
    45. Lin, Y., et al., Mechanical properties and the laminate structure of Arapaima gigas scales. Journal of the mechanical behavior of biomedical materials, 2011. 4(7): p. 1145-1156.
    46. Meyers, M.A., et al., Battle in the Amazon: Arapaima versus Piranha. Advanced Engineering Materials, 2012. 14(5): p. B279-B288.
    47. Sun, C.Y. and P.Y. Chen, Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms. Acta Biomater, 2013. 9(11): p. 9049-64.
    48. Langer, K., Anatomy and Physiology of Skin - Conclusions. British Journal of Plastic Surgery, 1978. 31(4): p. 277-278.
    49. Langer, K., Anatomy and Physiology of Skin .1. Cleavability of Cutis. British Journal of Plastic Surgery, 1978. 31(1): p. 3-8.
    50. Langer, K., Anatomy and Physiology of Skin .3. Elasticity of Cutis. British Journal of Plastic Surgery, 1978. 31(3): p. 185-199.
    51. Langer, K., Anatomy and Physiology of Skin .2. Skin Tension. British Journal of Plastic Surgery, 1978. 31(2): p. 93-106.
    52. Xu, C.Q., X.G. Yang, and J.Z. Zhao, Arthroscopic treatment for synovial chondromatosis of the subacromial bursa associated with partial rotator cuff tear. Knee Surgery Sports Traumatology Arthroscopy, 2015. 23(2): p. 600-602.
    53. Ridge, M.D. and V. Wright, Mechanical Properties of Skin - a Bioengineering Study of Skin Structure. Journal of Applied Physiology, 1966. 21(5): p. 1602-&.
    54. Ridge, M.D. and V. Wright, Directional Effects of Skin - a Bio-Engineering Study of Skin with Particular Reference to Langers Lines. Journal of Investigative Dermatology, 1966. 46(4): p. 341-&.
    55. Ashby, M.F., The Mechanical-Properties of Cellular Solids. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1983. 14(9): p. 1755-1769.
    56. Gennadios, A. and C.L. Weller, Edible Films and Coatings from Wheat and Corn Proteins. Food Technology, 1990. 44(10): p. 63-69.
    57. Wong, A.K., Orthodontic Elastic-Materials. Angle Orthodontist, 1976. 46(2): p. 196-205.
    58. Yannas, I.V. and J.F. Burke, Design of an Artificial Skin .1. Basic Design Principles. Journal of Biomedical Materials Research, 1980. 14(1): p. 65-81.
    59. Dong, C., et al., Development of a Device for Measuring Adherence of Skin-Grafts to the Wound Surface. Annals of Biomedical Engineering, 1993. 21(1): p. 51-55.
    60. Fratzl, P., N. Fratzlzelman, and K. Klaushofer, Collagen Packing and Mineralization - an X-Ray-Scattering Investigation of Turkey Leg Tendon. Biophysical Journal, 1993. 64(1): p. 260-266.
    61. Fratzl, P., et al., Fibrillar structure and mechanical properties of collagen. Journal of Structural Biology, 1998. 122(1-2): p. 119-122.
    62. Holzapfel, G.A., T.C. Gasser, and R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity, 2000. 61(1-3): p. 1-48.
    63. Schmid, F., et al., In situ tensile testing of human aortas by time-resolved small-angle X-ray scattering. Journal of Synchrotron Radiation, 2005. 12: p. 727-733.
    64. Oxlund, H., J. Manschot, and A. Viidik, The Role of Elastin in the Mechanical-Properties of Skin. Journal of Biomechanics, 1988. 21(3): p. 213-218.
    65. Haeckel, E.H., Generelle Morphologie der Organismen allgemeine Grundzuge der organischen Formen-Wissenschaft, mechanisch begrundet durch die von Charles Darwin reformirte Descendenz-Theorie von Ernst Haeckel: Allgemeine Entwickelungsgeschichte der Organismen kritische Grundzuge der mechanischen Wissenschaft von den entstehenden Formen der Organismen, begrundet durch die Descendenz-Theorie. Vol. 2. 1866: Verlag von Georg Reimer.
    66. Hunton, P., Research on eggshell structure and quality: an historical overview. Revista Brasileira de Ciência Avícola, 2005. 7(2): p. 67-71.
    67. Cody, M.L., Habitat Selection in Birds. 1985: Elsevier Science.
    68. Lingham-Soliar, T., The Vertebrate Integument Volume 1: Origin and Evolution. 2014: Springer Berlin Heidelberg.
    69. Paleontology, U.o.C.M.o. V. Paleobiology and eggs. Available from: http://www.ucmp.berkeley.edu/science/eggshell/eggshell5.php.
    70. Arias, J. and M. Fernandez, Role of extracellular matrix molecules in shell formation and structure. World's Poult. Sci. J, 2001. 57: p. 349-357.
    71. Nys, Y., et al., Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. Comptes Rendus Palevol, 2004. 3(6–7): p. 549-562.
    72. Tracy, C.R., Water Relations of Parchment-Shelled Lizard (Sceloporus-Undulatus) Eggs. Copeia, 1980(3): p. 478-482.
    73. Vitt, L.J., et al., History and the global ecology of squamate reptiles. American Naturalist, 2003. 162(1): p. 44-60.
    74. Sexton, O.J., et al., Eggshell composition of squamate reptiles: Relationship between eggshell permeability and amino acid distribution. Journal of Chemical Ecology, 2005. 31(10): p. 2391-2401.
    75. Fung, Y.C., Biomechanics: Mechanical Properties of Living Tissues. 1993: Springer.
    76. Boyle, J., Molecular biology of the cell, 5th edition by B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Biochemistry and Molecular Biology Education, 2008. 36(4): p. 317-318.
    77. GEEK,w.What is Keratin?; Available from: http://www.wisegeek.org/what-is-keratin.htm.
    78. Buehler, M.J. and Z. Qin. Hierarchical Structure Controls Nanomechanical Properties of Vimentin Intermediate Filaments. in ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. 2010. American Society of Mechanical Engineers.
    79. Fraser, R.D. and D.A. Parry, The molecular structure of reptilian keratin. Int J Biol Macromol, 1996. 19(3): p. 207-11.
    80. Vincent, J., Structural biomaterials. 2012: Princeton University Press.
    81. Hearle, J.W.S., A critical review of the structural mechanics of wool and hair fibres. International Journal of Biological Macromolecules, 2000. 27(2): p. 123-138.
    82. Pautard, F.G., Mineralization of Keratin and Its Comparison with the Enamel Matrix. Nature, 1963. 199: p. 531-5.
    83. Astbury, W.T. and W.R. Atkin, X-ray interpretation of the molecular structure of gelatine. Nature, 1933. 132: p. 348-348.
    84. Bendit, E.G., Alpha-Beta Transformation in Keratin. Nature, 1957. 179(4558): p. 535-535.
    85. Cao, J.N., Is the alpha-beta transition of keratin a transition of alpha-helices to beta-pleated sheets. II. Synchrotron investigation for stretched single specimens. Journal of Molecular Structure, 2002. 607(1): p. 69-75.
    86. Kreplak, L., et al., New aspects of the alpha-helix to beta-sheet transition in stretched hard alpha-keratin fibers. Biophysical Journal, 2004. 87(1): p. 640-647.
    87. Fudge, D.S., et al., The mechanical properties of hydrated intermediate filaments: Insights from hagfish slime threads. Biophysical Journal, 2003. 85(3): p. 2015-2027.
    88. Fudge, D.S., et al., Hagfish slime threads as a biomimetic model for high performance protein fibres. Bioinspir Biomim, 2010. 5(3): p. 035002.
    89. Miserez, A., et al., Non-entropic and reversible long-range deformation of an encapsulating bioelastomer. Nature materials, 2009. 8(11): p. 910-916.
    90. Wasko, S.S., et al., Structural proteins from whelk egg capsule with long range elasticity associated with a solid-state phase transition. Biomacromolecules, 2014. 15(1): p. 30-42.
    91. Harrington, M.J., et al., Pseudoelastic behaviour of a natural material is achieved via reversible changes in protein backbone conformation. Journal of The Royal Society Interface, 2012: p. rsif20120310.
    92. Miserez, A. and P.A. Guerette, Phase transition-induced elasticity of alpha-helical bioelastomeric fibres and networks. Chemical Society Reviews, 2013. 42(5): p. 1973-1995.
    93. Speakman, J., The rigidity of wool and its change with adsorption of water vapour. Trans. Faraday Soc., 1929. 25: p. 92-103.
    94. Watt, I.C. and J.D. Leeder, Stoichiometric Analysis of Wool-Water Isotherm. Journal of the Textile Institute, 1968. 59(8): p. 353-&.
    95. Gunt, H.B. and G.B. Kasting, Equilibrium water sorption characteristics of the human nail. International Journal of Cosmetic Science, 2007. 29(6): p. 487-487.
    96. Barba, C., et al., Water absorption/desorption of human hair and nails. Thermochimica Acta, 2010. 503: p. 33-39.
    97. Dieter, G.E. and D. Bacon, Mechanical Metallurgy. 1988: McGraw-Hill.
    98. Qu, R., P. Zhang, and Z. Zhang, Notch Effect of Materials: Strengthening or Weakening? Journal of Materials Science & Technology, 2014. 30(6): p. 599-608.
    99. Barenblatt, G.I., Equilibrium Cracks Formed on a Brittle Fracture. Doklady Akademii Nauk Sssr, 1959. 127(1): p. 47-50.
    100. Dugdale, D.S., Yielding of Steel Sheets Containing Slits. Journal of the Mechanics and Physics of Solids, 1960. 8(2): p. 100-104.
    101. Petroski, H.J., Dugdale Plastic Zone Sizes for Edge Cracks. International Journal of Fracture, 1979. 15(3): p. 217-230.
    102. Jia, L., Determination of the full elastic-plastic stress field of a tensile crack by minimization of the complementary energy. International Journal of Fracture, 1997. 84(1): p. 1-17.
    103. Hui, C.Y., et al., Crack blunting and the strength of soft elastic solids. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 2003. 459(2034): p. 1489-1516.
    104. Porter, D. and F. Vollrath, Silk as a Biomimetic Ideal for Structural Polymers. Advanced Materials, 2009. 21(4): p. 487-492.
    105. Keten, S. and M.J. Buehler, Asymptotic strength limit of hydrogen-bond assemblies in proteins at vanishing pulling rates. Physical Review Letters, 2008. 100(19).
    106. Keten, S. and M.J. Buehler, Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Letters, 2008. 8(2): p. 743-748.
    107. Giesa, T. and M.J. Buehler, Nanoconfinement and the Strength of Biopolymers. Annual Review of Biophysics, Vol 42, 2013. 42: p. 651-673.
    108. Lillie, M.A. and J.M. Gosline, The viscoelastic basis for the tensile strength of elastin. International Journal of Biological Macromolecules, 2002. 30(2): p. 119-127.
    109. Giesa, T., et al., What's Inside the Box? - Length-Scales that Govern Fracture Processes of Polymer Fibers. Advanced Materials, 2014. 26(3): p. 412-417.
    110. Shi, R., et al., Recent Advances in Synthetic Bioelastomers. International Journal of Molecular Sciences, 2009. 10(10): p. 4223-4256.
    111. Stuart, B.H., Polymer analysis. Vol. 30. 2008: John Wiley & Sons.
    112. Li, Z. and B.H. Tan, Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications. Materials Science and Engineering: C, (0).
    113. Huang, M.H., S.M. Li, and M. Vert, Synthesis and degradation of PLA-PCL-PLA triblock copolymer prepared by successive polymerization of epsilon-caprolactone and (DL)-lactide. Polymer, 2004. 45(26): p. 8675-8681.
    114. Wei, X.W., et al., Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. International Journal of Pharmaceutics, 2009. 381(1): p. 1-18.
    115. Shit, S.C. Biodegradable Thermoplastic Elastomers (Btpe) In Critical Clinical Practice. 2011; Available from: http://www.medicalplasticsindia.com/mpds/2011/jan/materials.htm
    116. Bhattarai, N., J. Gunn, and M.Q. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews, 2010. 62(1): p. 83-99.
    117. Scotchford, C.A., et al., Water uptake and protein release characteristics of a new methacrylate-based polymer system. Polymer, 1997. 38(15): p. 3869-3874.
    118. Lin, C.-C. and A.T. Metters, Hydrogels in controlled release formulations: network design and mathematical modeling. Advanced drug delivery reviews, 2006. 58(12): p. 1379-1408.
    119. Lin, C.-C. and A.T. Metters, Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 2006. 58(12–13): p. 1379-1408.
    120. Paleontology, U.o.C.M.o. I. Introduction to eggshells. Evolution of the amniote egg; Available from: http://www.ucmp.berkeley.edu/science/eggshell/eggshell1.php.
    121. Gibson, L.J. and M.F. Ashby, Cellular solids: structure and properties. 1997: Cambridge university press.
    122. ASTM D882-12 Standard Test Method for Tensile Properties of Thin Plastic Sheeting, American Society for Testing Materials, Philadelphia, Pa, USA.
    123. Davis, J.R., Tensile Testing, 2nd Edition. 2004: A S M International.
    124. Oyen, M.L., V.L. Ferguson, and S.E. Calvin, Fracture resistance of human amnion. Proceeding of the Asme Summer Bioengineering Conference - 2007, 2007: p. 841-842.
    125. Oyen-Tiesma, M. and R.F. Cook, Technique for estimating fracture resistance of cultured neocartilage. Journal of Materials Science-Materials in Medicine, 2001. 12(4): p. 327-332.
    126. (PBL), P.B. Assessing Biocompatibility: Biological Test Methods. Available from: http://www.pacificbiolabs.com/bio_methods.asp#cytotoxicity.
    127. D.L. Goble, E.G.W., Strain-rate Sensitivity Index of Thermoplastics. Chapman & Hall, 1993(0022-2461): p. 5986-5994.
    128. Fudge, D.S., et al., The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophys J, 2003. 85(3): p. 2015-27.
    129. Stella, J.A., et al., On the biomechanical function of scaffolds for engineering load-bearing soft tissues. Acta Biomater, 2010. 6(7): p. 2365-81.
    130. Tardiff, G.E., B.A. Kuhn, and L.A. Heldt, Study of plane stress fracture in the large-scale plastic yielding regime. 1974. Medium: ED; Size: Pages: 28.
    131. Brown Jr, W.F. and J.E. Srawley, Plane strain crack toughness testing of high strength metallic materials. 1967.
    132. Harrington, M.J., et al., Pseudoelastic behaviour of a natural material is achieved via reversible changes in protein backbone conformation. J R Soc Interface, 2012. 9(76): p. 2911-22.
    133. Rapoport, H.S. and R.E. Shadwick, Mechanical characterization of an unusual elastic biomaterial from the egg capsules of marine snails (Busycon spp.). Biomacromolecules, 2002. 3(1): p. 42-50.
    134. Goble, D. and E. Wolff, Strain-rate sensitivity index of thermoplastics. Journal of materials science, 1993. 28(22): p. 5986-5994.
    135. International, A., ASTM E561 Standard Test Method for K-R Curve Determination. 1995, Annual Book of ASTM Standards: Philadelphia, PA. p. 16.
    136. International, A., ASTM G133- 05(2010) Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. 2010: West Conshohocken, PA. p. 10.
    137. Gunt, H.B., M.A. Miller, and G.B. Kasting, Water diffusivity in human nail plate. Journal of pharmaceutical sciences, 2007. 96(12): p. 3352-3362.
    138. Zografi, G., et al., Surface area and water vapor sorption of macrocrystalline cellulose. International Journal of Pharmaceutics, 1984. 18(1–2): p. 99-116.
    139. Lewicki, P.P., The applicability of the GAB model to food water sorption isotherms. International Journal of Food Science & Technology, 1997. 32(6): p. 553-557.
    140. Anderson, R.B., Modifications of the Brunauer, Emmett and Teller Equation1. Journal of the American Chemical Society, 1946. 68(4): p. 686-691.
    141. Brunauer, S., P.H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 1938. 60(2): p. 309-319.
    142. C.C. Chou and M. J. Buehler, Structure and Mechanical Properties of Human Trichocyte Keratin Intermediate Filament Protein. Biomacromolecules, 2012. 13(11): p. 3522-3532
    143. Ackbarow T, Sen D, Thaulow C, Buehler MJ, Alpha-Helical Protein Networks Are Self-Protective and Flaw-Tolerant. PLoS ONE, 2009. 4(6): e6015.
    144. Pierre A. Coulombe, Michelle L. Kerns, Elaine Fuchs, Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. J Clin Invest, 2009. 119(7): p. 1784-1793.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE