研究生: |
張紹庭 Chang, Shao-Ting |
---|---|
論文名稱: |
CSF3和CSF3R在膀胱癌進展中的角色 The roles of CSF3 and CSF3R in bladder cancer progression |
指導教授: |
周裕珽
Chou, Yu-Ting |
口試委員: |
王淵宏
Wang, Yuan-Hung 陳惠珍 Chen, Hui-Chen 潘憲堂 Pan, Shien-Tung |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 膀胱癌 、CSF3 、CSF3R 、neutrophil 、ELANE 、腫瘤微環境 |
外文關鍵詞: | bladder cancer, CSF3, CSF3R, neutrophil, ELANE, tumor microenvironment |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膀胱癌為全球十大惡性癌症之一。常見的膀胱癌治療方法包括卡介苗疫苗療法、手術切除、化學治療、放射線治療和免疫檢查點抑制劑療法。早期膀胱癌病患在接受治療後,存活率大多會有顯著改善,但對於晚期膀胱癌病患目前並無普遍有效的療法。先前臨床資料指出部分晚期的膀胱癌病患會有neutrophil異常增生的現象。其它癌症的研究則表明neutrophil會參與腫瘤的進展,但neutrophil在膀胱癌中的作用仍未明瞭。我們的研究闡述了腫瘤微環境中癌細胞與免疫細胞的交互作用如何促進膀胱癌的進展。
已知CSF3會促進neutrophil的增生且CSF3R為CSF3的受體。我們發現膀胱癌細胞5637有CSF3表現卻沒有 CSF3R表現。相對地,骨髓衍生細胞HL60則有CSF3R表現而沒有CSF3表現。收集5637細胞的conditioned medium 去培養HL60細胞會使其大量增生。而在5637細胞中降低CSF3的表現並不會影響細胞本身的生長情況,但會抑制5637細胞 conditioned medium增加HL60細胞增生的效果,說明膀胱癌細胞所表現的CSF3不會直接影響其本身的生長而是去促進neutrophil的增生。另一方面,我們也發現HL60細胞所表現的ELANE可以提升5637細胞在低濃度血清下的存活能力。除此之外,更進一步的研究結果表明5637細胞所分泌的CSF3可以提升HL60細胞的浸潤程度。綜合上述的研究結果,我們推測膀胱癌細胞會分泌CSF3去提高neutrophil的增生與浸潤程度再藉由neutrophil所分泌的ELANE來增加其本身的存活能力。
整體而言,在本研究中我們提供了新的觀點,清楚地說明膀胱癌細胞在腫瘤微環境中是如何誘導neutrophil來協助自身的生長。另外使用來自the cancer genome atlas (TCGA) 資料去做膀胱癌的預後分析,再次表明CSF3和ELANE之間的關係對於pro-tumor膀胱癌腫瘤微環境的形成佔有重要地位,2者之間除了有正相關表現外,ELANE表現量越高的病患會有越低的overall survival。我們認為ELANE有潛力成為膀胱癌病患新的預後指標和治療標靶。
Granulocyte colony stimulating factor (G-CSF), encoded by CSF3, and its receptor G-CSFR, encoded by CSF3R, regulates neutrophil proliferation. However, the roles of CSF3 and CSF3R in bladder cancer progression remain elusive. Here, we report that CSF3 is highly expressed in a subgroup of bladder tumors, which display high neutrophil infiltration and low tumor purity. We observed that CSF3 was highly expressed in a subgroup of bladder tumors, which display high neutrophil infiltration and low tumor purity. We observed that CSF3 was highly expressed in T24 cells and basal-like bladder cancer 5637 cells but not in luminal-like bladder cancer RT4 cells. In contrast, CSF3R was highly expressed in myeloid-derived HL60 cells but not in 5637, T2 and RT4 bladder cancer cells. Knockdown of CSF3 did not affect growth of 5637 bladder cancer cells. However, the conditioned medium from 5637 bladder cancer promoted cell cycle of HL60 promyelocytic cells, and silencing CSF3 in 5637 cells attenuated this effect. The clonogenic assays showed that the conditioned medium from HL60 promyelocytic cells rendered 5637 bladder cancer cells resistant to low serum stress, whereas knockdown of ELANE in HL60 cells diminished this effect. Kaplan-Meier survival analysis showed that high ELANE expression was associated with poor survival in bladder cancer, and bladder tumors harboring ELANE-high/CSF3R-high signature displayed worse overall survival outcomes. Our findings provide insights into the roles of CSF3 and CSF3R in bladder cancer cells and myeloid-derived cells for their potential crosstalk in tumor progression.
1. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 2021. 71(3): p. 209-249.
2. Stenehjem, D., et al., PD1/PDL1 inhibitors for the treatment of advanced urothelial bladder cancer. OncoTargets and Therapy, 2018. Volume 11: p. 5973-5989.
3. Knowles, M.A. and C.D. Hurst, Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nature reviews cancer, 2015. 15(1): p. 25-41.
4. Fong, M.H.Y., et al., Update on bladder cancer molecular subtypes. Translational Andrology and Urology, 2020. 9(6): p. 2881-2889.
5. <Understanding Bladder Cancer-A guide for people with cancer, their femilies and friends.pdf>.
6. Babjuk, M., et al., European Association of Urology Guidelines on Non–muscle-invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ). European Urology, 2021.
7. Tran, L., et al., Advances in bladder cancer biology and therapy. Nature Reviews Cancer, 2021. 21(2): p. 104-121.
8. Damrauer, J.S., et al., Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proceedings of the National Academy of Sciences, 2014. 111(8): p. 3110-3115.
9. Benerini Gatta, L., et al., Hyper-Activation of STAT3 Sustains Progression of Non-Papillary Basal-Type Bladder Cancer via FOSL1 Regulome. Cancers, 2019. 11(9): p. 1219.
10. Warrick, J.I., et al., FOXA1, GATA3 and PPARɣ Cooperate to Drive Luminal Subtype in Bladder Cancer: A Molecular Analysis of Established Human Cell Lines. Scientific Reports, 2016. 6(1): p. 38531.
11. Mandelli, G.E., et al., Tumor infiltrating neutrophils are enriched in basal-type urothelial bladder cancer. Cells, 2020. 9(2): p. 291.
12. Choi, W., et al., Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer cell, 2014. 25(2): p. 152-165.
13. Czerniak, B., C. Dinney, and D. McConkey, Origins of bladder cancer. Annual Review of Pathology: Mechanisms of Disease, 2016. 11: p. 149-174.
14. Van Batavia, J., et al., Bladder cancers arise from distinct urothelial sub-populations. Nature cell biology, 2014. 16(10): p. 982-991.
15. Aurilio, G., et al., Narrative review: update on immunotherapy and pathological features in patients with bladder cancer. Translational Andrology and Urology, 2021. 10(3): p. 1521-1529.
16. Lenis, A.T., P.M. Lec, and K. Chamie, Bladder cancer: a review. Jama, 2020. 324(19): p. 1980-1991.
17. Zhou, X., et al., Classification of muscle-invasive bladder cancer based on immunogenomic profiling. Frontiers in oncology, 2020. 10: p. 1429.
18. Wu, Z., et al., Profiles of immune infiltration in bladder cancer and its clinical significance: an integrative genomic analysis. International journal of medical sciences, 2020. 17(6): p. 762.
19. Barreda, D.R., P.C. Hanington, and M. Belosevic, Regulation of myeloid development and function by colony stimulating factors. Developmental & Comparative Immunology, 2004. 28(5): p. 509-554.
20. Wright, C.R., A.C. Ward, and A.P. Russell, Granulocyte Colony-Stimulating Factor and Its Potential Application for Skeletal Muscle Repair and Regeneration. Mediators of Inflammation, 2017. 2017: p. 1-9.
21. Roberts, A.W., G-CSF: A key regulator of neutrophil production, but that's not all! Growth Factors, 2005. 23(1): p. 33-41.
22. Aliper, A.M., et al., A role for G‐CSF and GM‐CSF in nonmyeloid cancers. Cancer Medicine, 2014. 3(4): p. 737-746.
23. Karagiannidis, I., et al., G-CSF in tumors: Aggressiveness, tumor microenvironment and immune cell regulation. Cytokine, 2021. 142: p. 155479.
24. Hollmén, M., et al., G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. OncoImmunology, 2016. 5(3): p. e1115177.
25. Yang, X.-D., et al., Expression of granulocyte colony-stimulating factor receptor in rectal cancer. World Journal of Gastroenterology: WJG, 2014. 20(4): p. 1074.
26. Fan, Z., et al., Highly expressed granulocyte colony-stimulating factor (G-CSF) and granulocyte colony-stimulating factor receptor (G-CSFR) in human gastric cancer leads to poor survival. Medical science monitor: international medical journal of experimental and clinical research, 2018. 24: p. 1701.
27. Arneth, B., Tumor Microenvironment. Medicina, 2019. 56(1): p. 15.
28. Del Prete, A., et al., Leukocyte trafficking in tumor microenvironment. Current opinion in pharmacology, 2017. 35: p. 40-47.
29. Wu, L., S. Saxena, and R.K. Singh, Neutrophils in the Tumor Microenvironment. 2020, Springer International Publishing. p. 1-20.
30. Osipov, A., et al., Small molecule immunomodulation: the tumor microenvironment and overcoming immune escape. Journal for ImmunoTherapy of Cancer, 2019. 7(1).
31. Korkmaz, B., et al., Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacological reviews, 2010. 62(4): p. 726-759.
32. Lei, X., et al., Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer letters, 2020. 470: p. 126-133.
33. Li, Y.-C., et al., Circulating tumor cells promote the metastatic colonization of disseminated carcinoma cells by inducing systemic inflammation. Oncotarget, 2017. 8(17): p. 28418.
34. Mantovani, A., et al., Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology, 2011. 11(8): p. 519-531.
35. Fridlender, Z.G., et al., Polarization of tumor-associated neutrophil phenotype by TGF-β:“N1” versus “N2” TAN. Cancer cell, 2009. 16(3): p. 183-194.
36. Veglia, F., M. Perego, and D. Gabrilovich, Myeloid-derived suppressor cells coming of age. Nature Immunology, 2018. 19(2): p. 108-119.
37. Zhou, J., et al. Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells. in Seminars in immunology. 2018. Elsevier.
38. Brandau, S., K. Moses, and S. Lang. The kinship of neutrophils and granulocytic myeloid-derived suppressor cells in cancer: cousins, siblings or twins? in Seminars in cancer biology. 2013. Elsevier.
39. Borregaard, N., Neutrophils, from marrow to microbes. Immunity, 2010. 33(5): p. 657-670.
40. Coffelt, S.B., M.D. Wellenstein, and K.E. de Visser, Neutrophils in cancer: neutral no more. Nature Reviews Cancer, 2016. 16(7): p. 431-446.
41. Bronte, V., et al., Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature communications, 2016. 7(1): p. 1-10.
42. Sadler, J.E., Elastase-2/Leukocyte Elastase. J. Biol. Chem. 277(9): p. 6858Ā6863.
43. Yamashita, J.-i., et al., Tumor neutrophil elastase is closely associated with the direct extension of non-small cell lung cancer into the aorta. Chest, 1997. 111(4): p. 885-890.
44. Moroy, G., et al., Neutrophil elastase as a target in lung cancer. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2012. 12(6): p. 565-579.
45. Kerros, C., et al., Neuropilin-1 mediates neutrophil elastase uptake and cross-presentation in breast cancer cells. Journal of Biological Chemistry, 2017. 292(24): p. 10295-10305.
46. Lerman, I., et al., Infiltrating Myeloid Cells Exert Protumorigenic Actions via Neutrophil Elastase. Molecular Cancer Research, 2017. 15(9): p. 1138-1152.
47. Lerman, I. and S.R. Hammes, Neutrophil elastase in the tumor microenvironment. Steroids, 2018. 133: p. 96-101.
48. Tzavlaki, K. and A. Moustakas, TGF-β Signaling. Biomolecules, 2020. 10(3): p. 487.
49. Derynck, R. and E.H. Budi, Specificity, versatility, and control of TGF-β family signaling. Science Signaling, 2019. 12(570): p. eaav5183.
50. Colak, S. and P. Ten Dijke, Targeting TGF-β signaling in cancer. Trends in cancer, 2017. 3(1): p. 56-71.
51. Huynh, L., C. Hipolito, and P. Ten Dijke, A Perspective on the Development of TGF-β Inhibitors for Cancer Treatment. Biomolecules, 2019. 9(11): p. 743.
52. Boye, A., A cytokine in turmoil: Transforming growth factor beta in cancer. Biomedicine & Pharmacotherapy, 2021. 139: p. 111657.
53. Zhang, S., et al., Tumor-associated macrophages promote tumor metastasis via the TGF-β/SOX9 axis in non-small cell lung cancer. Oncotarget, 2017. 8(59): p. 99801-99815.
54. Mojsilovic, S., et al., Transforming growth f actor‐beta1 and m yeloid‐derived suppressor cells: A cancerous partnership. Developmental Dynamics, 2021.
55. Gutschalk, C.M., et al., Granulocyte Colony-Stimulating Factor and Granulocyte-Macrophage Colony-Stimulating Factor Promote Malignant Growth of Cells from Head and Neck Squamous Cell Carcinomas In vivo. Cancer Research, 2006. 66(16): p. 8026-8036.
56. Karagiannidis, I., et al., G-CSF and G-CSFR modulate CD4 and CD8 T cell responses to promote colon tumor growth and are potential therapeutic targets. Frontiers in immunology, 2020. 11: p. 1885.
57. Morris, K.T., et al., G-CSF and G-CSFR are highly expressed in human gastric and colon cancers and promote carcinoma cell proliferation and migration. British Journal of Cancer, 2014. 110(5): p. 1211-1220.
58. Hori, S., et al., Evaluation of pro‑ and anti‑tumor effects induced by three colony‑stimulating factors, G‑CSF, GM‑CSF and M‑CSF, in bladder cancer cells: Is G‑CSF a friend of bladder cancer cells? International Journal of Oncology, 2019.
59. Kawano, M., et al., The significance of G-CSF expression and myeloid-derived suppressor cells in the chemoresistance of uterine cervical cancer. Scientific Reports, 2015. 5(1): p. 18217.
60. Shojaei, F., et al., G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proceedings of the National Academy of Sciences, 2009. 106(16): p. 6742-6747.
61. Kowanetz, M., et al., Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proceedings of the National Academy of Sciences, 2010. 107(50): p. 21248-21255.
62. Houghton, A.M., et al., Neutrophil elastase–mediated degradation of IRS-1 accelerates lung tumor growth. Nature Medicine, 2010. 16(2): p. 219-223.
63. Cui, C., et al., Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell, 2021. 184(12): p. 3163-3177. e21.
64. Parente, P., et al., Crosstalk between the tumor microenvironment and immune system in pancreatic ductal adenocarcinoma: potential targets for new therapeutic approaches. Gastroenterology research and practice, 2018. 2018.