簡易檢索 / 詳目顯示

研究生: 江峻諺
Chiang,Chun-Yen
論文名稱: 高工作電壓鋰鎳錳氧正極材料之合成與其電化學行為的改善
Synthesis of High Voltage Cathode Material LiNi0.5Mn1.5O4 and Improvement of its Electrochemical Performance
指導教授: 杜正恭
Duh,Jenq-Gong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 83
中文關鍵詞: 鋰電池鋰鎳錳氧電動車溶膠凝膠法
外文關鍵詞: Li ion battery, LiNi0.5Mn1.5O4, sol-gel
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尖晶石相鋰錳氧的延伸生化合物,鋰鎳錳氧正極材料擁有了高安全性與長時間循環壽命的優點。近幾年來,鋰鎳錳氧材料由於其具備了4。7V的高工作電壓,因而被廣泛的研究。
    而鋰鎳錳氧電池經高溫充放電時,電容量損失的情形嚴重而降低其循環壽命。在本研究中,藉由添加3wt%奈米級的氧化鋁粉體於鋰鎳錳氧極片中,可以明顯地提升其在高溫環境下的循環壽命。在電化學的行為上,添加氧化鋁粉比未添加的極片好,結果顯示,在55oC下經過100次的充放電循環後,添加過氧化鋁粉的極片仍保有83%的電容量,反而未添加的極片只有66%的電容量。其之所以表現出較佳的電化學性能,從FE-EPMA與XPS的分析結果,可以知道最主要的原因,在於所添加的氧化鋁粉,會抑制高電阻值的氟化鋰沉積在鋰鎳錳氧的活物表面,因此減緩了電池內阻抗隨著高溫測試時上升的情形。
    除此之外,為了提升鋰電池的效能,使其能夠達到在下個世代的油電混合車或電動車所需的高功率輸出。鋰鎳錳氧正極材料必須要具備有快速充放電的能力。在本研究中,藉由一新穎的粉體合成製程,可成功地生產出具有快速充放電能力的純相鋰鎳錳氧粉體。在較為低的600oC煆燒溫度下,所得之產物是具有奈米結構且結晶性良好的鋰鎳錳氧粉體。而此粉體展現出了相當優異的電化學性能,於慢速充放電之下,電容量為133mAh/g。更重要的是,其以10C的高速放電測試時,仍可得到122mAh/g的高電容量。


    LiNi0.5Mn1.5O4 (LNMO), an extended compound of spinel LiMn2O4, possesses the advantages of safety and long cycle life. In recent years, LiNi0.5Mn1.5O4 has been extensively studied due to its high operation voltage around 4.7V (versus Li/Li+), which is higher that of the commonly used cathode material LiCoO2.
    Bare LNMO suffered severe capacity fading during charge/discharge at elevated temperature. In this study, the cyclability of LNMO cells at 55oC can be significantly improved by adding 3 wt% nano-Al2O3 powders into LNMO electrodes. In comparing nano-Al2O3 contained with bare-LNMO cells, the former exhibite better electrochemical performance. After 100 cycles at 55oC, nano-Al2O3 contained LNMO cells preserve 83% of initial capacity whereas the capacity retention of bare LNMO cells is 66%. The main reason for better electrochemical performance of nano-Al2O3 contained LNMO cells is owing to the alleviation of increasing in cell impedance during 55oC cycling. It can be reasonably correlated to the suppression of formation of high resistive LiF on the surface of active masses, which is identified by FE-EPMA and XPS analysis.
    Furthermore, to increase the power capability and to meet the requirement of new generation LIBs for EV/HEV, LiNi0.5Mn1.5O4 is expected to be capable of fast charge/discharge. In this study, high current rate capability and single phase LiNi0.5Mn1.5O4 powders were successfully produced via a novel synthesis procedure combining sol-gel route with combustion method. Through this approach, well-crystallized LiNi0.5Mn1.5O4 powders with nano-structure were obtained at a low temperature of 600oC. Nano-structured LiNi0.5Mn1.5O4 half-cells have exhibited superior electrochemical performances. At a slower discharge rate, a capacity of 133mAh/g could be delivered. Moreover, the nano-structured LiNi0.5Mn1.5O4 delivered a capacity of 122mAh/g at a discharge rate as high as 10C. Thus, a superior power capability was achieved.

    Abstract Content List of Tables Figures Caption Chapter 1 Introduction……………………………………………………1 1.1 Energy sources and storage………………………………………..1 1.2 Motivations…………………………………………………………2 Chapter 2 Literature Review…………………………………………4 2.1 Introduction of Lithium Ion Batteries (LIBs)…………………4 2.1.1 Evolution of LIBs……………………………………………4 2.1.2 Cathode Materials in LIBs…………………………………6 2.2 High Voltage Cathode Materials………………………………12 2.2.1 Evolution of 5V Cathode Materials………………………12 2.3 Electrochemical Performance of LiNi0.5Mn1.5O4………………15 2..3.1 Cycling and Aging Behavior at Elevated Temperature……15 2.3.2 Nano-structured LiNi0.5Mn1.5O4 Powder……………….…18 Chapter 3 Experimental Procedure……….……………………………32 3.1 Synthesis procedure………………………………………………32 3.1.1 Powder preparation by sol-gel method………………………32 3.1.2Nano-structured LiNi0.5Mn1.5O4 derived from a low temperature sol-gel method……….……………………………………….32 3.2 Characterization and analysis………………………….….……….34 3.2.1 Thermal analysis……………………….……….……….….…34 3.2.2 Compositional evaluation………………….……..…….…….34 3.2.3 Phase identification………………………………………….34 3.2.4 Morphological observation…………………………………..35 3.2.5 Surface chemistry investigation……………………35 3.2.5Electrochemical characterization……………………………..36 Chapter 4 Results and Discussion………………………………………41 4.1 Significant Improvement of Cyclability of 4.7V LNMO Cells at 55oC by Nano-Al2O3 Powders Additive…………………..…….41 4.2 High Power Capability, Impurity-Free and Nano-structured LiNi0.5Mn1.5O4 Synthesized by a Novel Sol-Gel Route. ..…….… 64 Chapter 5 Conclusions…………………………………………………..82 Reference

    1. J.M. Tarascon and M. Armand, “Issue and challengs facing rechargeable lithium batteries”, Nature, 414 (2001) 359-367.
    2. B. Scrosati, “Power Sources for Portable Electronics an Hybird Cars: Lithium Batteries and Fuel Cells”, Chem. Rec., 5 (2005) 286-297
    3. J.B. Goodenough, “Cathode materials: A personal perspective”, J. Power Sources, 174 (2007) 996-1000.
    4. Y. Gao, K. Myrtle, M. Zhang, J. N. Reimers and J. R. Dahn, “Valence band of LiNixMn2-xO4 and its effects an the voltage profiles of LiNixMn2-xO4/Li electrochemical cells“, Physical Review B, 54(23) (1996) 16670
    5. S. Patoux, L. Sannier, H. Lignier, Electrochim. Acta, 53 , 4137 (2008)7
    6. A. Volta, “On the electricity excited by the mere contact of conducting substances of different kinds,” Philosophical Transactions, (1800) 403-401
    7. Y. Matsuda and Z. Takehara (Eds.), Denchi Binran (Battery Handbook), 3rd Ed., Maruzen, Tokyo (2001) 47.
    8. Y. Matsuda and Z. Takehara (Eds.), Denchi Binran (Battery Handbook), 3rd Ed., Maruzen, Tokyo (2001) 145-146.
    9. Sony Corporation, “US 18650G3”, Sony Data Sheets for Lithium Ion Battery, (2000) 14-15
    10. J. Hajek, French Patent, 8 (1949) 10.
    11. K.A. Klinedinst, U.S. Patent, NO. 4,176,214 (1979)
    12. M.S. Whittingham, “ Electrical energy storage and intercalation chemistry science”, Science, 192 (1976) 1126-1128
    13. K. Brandt, “A 65-AH rechargeable lithium molybdemun-disulfidebattery,” J. Power Sources, 18 (1986) 117–125.
    14. Y. Sakurai, U. S. Patent, No. 4,675,260 (1987).
    15. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough,“LixCoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density,” Mater. Res. Bull., 15 (1980) 783–789.
    16. K. Brandt, “A 65-AH rechargeable lithium molybdemun-disulfide battery,” J. Power Sources, 18 (1986) 117–125.
    17. Y. Sakurai, U. S. Patent, No. 4,675,260 (1987).
    18. M.S. Whittingham and M.B. Dines, “n-Butyllithium: an effective, general cathode screening agent,” J. Electrochem. Soc., 124 (1977) 1387–1388.
    19. M. Lazzari and B. Scrosati, “A cyclable lithium organic electrolytecell based on two intercalation electrodes,” J. Electrochem. Soc., 127 (1980) 773–774.
    20. B. Di Pietro, M. Patriarca, and B. Scrosati, “On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries,” J. Power Sources, 8 (1982) 289–299.
    21. T. Nagaura and K. Tozawa, Prog. Batt. Solar Cells, “Lithium ion rechargeable battery,” 9 (1990) 209.
    22. M. Inaba and Z. Ogumi, “Up-to-date development of lithium-ion batteries in Japan,” IEEE Electrical Insulation Magazine, 17 (2001) 6–20.
    23. W.S. John, R.R. Heikes, DD. Sestrich, “The preparation, crystallography, and magnetic properties of the LixCo1-xO system”, J. Phys. Chem. Solids, 7 (1958) 1-13.
    24. K. Mizushima, P.C. Jones, P.J. Wiseman and J.B. Goodenough, “LixCoO2 (0<x<1): A new cathode material for batteries of high energy density”, Mater. Res. Bull., 15 (1980) 783-789.
    25. H.J. Orman and P.J. Wiseman, “Cobalt (III) Lithium Oxide, CoLiO2: Structure Refinement by Powder Neutron Diffraction”, Acta. Cryst., 40 (1984) 12-14
    26. E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W.B. Ebner and H.W. Lin, “ A Rechargeable Li/LixCoO2 Cell”, J. Power sources, 21 (1987) 25-31
    27. J. Molenda, A. Stoklosa and T. Bak, “Modification in the Electronic-structure of Cobalt Bronze LixCoO2 and the Resulting Electrochemical Properties”, Solid State Ionics, 36 (1989) 53-58.
    28. T. Nagaura and K. Tozawa, “Lithium-ion rechargeable battery”, Prog. Batt. Solar Cells, 9 (1990) 209-217
    29. A. Van der Ven, M.K. Aydinol, G. Cederm G. Kresse and J. Hafner, “First-principles investigation of phase stability in LixCoO2”, Phys. Rev. B, 58 (1998) 2975-2987.
    30. C. Delmas, “Alkali metal intercalation in layered oxides”, Mater. Sci. Eng. B, 3 (1-2) (1998) 97-101.
    31. M.K. Aydinol, A.F. Kohan and G. ceder, K. Cho and J. Joannopoulos, “ Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides”, Phy. Rev. B, 56 (1997) 1354-1365.
    32. C.C. Chang, J.Y. Kim and P.N. Kumta, “Divalent cation incorporated Li1+xMMgxO2(1+x) (M = Ni0.75Co0.25): Viable cathode materials for rechargeable lithium-ion batteries”, J. Power Sources, 89 (2000) 56-63.
    33. S. Venkatraman, J. Choi and A. Manthiram, “Factors influencing the chemical lithium extraction rate from layered LiNi1-y-zCoyMnzO2 cathodes”, Electrochem. Commun., 6 (2004) p. 8322
    34. S.B. Schougaard, J. Bréger, M. Jiang, C.P. Grey and J.B. Goodenough, Adv. Mater. 18 (2006), p. 905
    35. Y. Wu and A. Manthiram, Electrochem. Solid State Lett. 9 (2006), p. A221
    36. A.A. Salah, A. Mauger, K. Zagrib, J.B. Goodenough, N. Ravet, M. Gauthier, F. Gendron and C.M. Julien, J. Electrochem. Soc. 153 (2006), p. A1692
    37. W.A. Deer, R.A. Howie and J. Zussman, “An introduction to the rock-forming minerals”, Longman, Colchester, Essex, 1992.
    38. D.G. Wickham and W.J. Croft, “ Crystallographic and magnetic properties of several spinels containing trivalent ja-1044 manganese”, J. phys. Chem. Sloids, 7 (1958) 351-360.
    39. J. C. Hunter, “Preparation of A New Crystal Form of Manganese-Dioxide Lambda-MnO2”, J. Solid State Chem., 39 (1981) 142-147.
    40. M.M. Thackeray, W.I.F. David, P.G. Bruce and J.B. Goodenough, “Lithium Insertion into Manganese Spinels”, Mat. Res. Bull., 18(4) (1983) 461-472.
    41. J.R. Dahn, U. von Sacken, M.R. Juzkow and H. Al-Janaby, “Rechargeable LiNiO2/Carbon Cells”, J. Electrochem. Soc., 138 (1991) 2207-2211.
    42. R.J. Gummow, A. Dekock and M.M. Thackeray, “Improved Capacity Retention in Rechargeable 4V Lithium/Lithium-Manganese-Oxide (Spinel) Cells”, Solid State Ioics, 69 (1994) 59-67.
    43. R.K. Mishra and G. Thomas, “Surface Energy of Spinel”, J. Appli. Phys., 48 (1977) 4576-4580.
    44. J. M. Tarascon, E. Wang and F.K. Shokoohi, “The Spinel Phase of LiMn2O4 as A Cathode in Secondary Lithium Cells”, J. Electrochem. Soc., 138 (1991) 2859-2864.
    45. D.H. Doughy, “Materials issues in lithium ion rechargeable battery technology”, SAMPLE Journal, 32 (1996) 75-81.
    46. Q.M. Zhong, A. Bonakdarpour, M.J. Zhang and J.R. Dahn, J. Electrochem. Soc., 144 (1997) 2005.
    47. C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard and M. Tournoux, “Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2−yO4 (0 ≤ y ≤ 1)”, Solid State Ionics, 81(3-4) (1995) 167-170.
    48. Y. Ein-Eli, S.H. Lu, M.A. Rzeznik, S. Mukerjee, X.Q. Yong and J. McBeen, “LiCuxMn2-xO4 spinels (0.1< x < 0.5): A new class of cathode material for Li batteries”, J. Electrochem.Soc., 145(10) (1998) 3383-3386
    49. H. Shigemura, H. Sakaebe, H. Kageyama, H. Kobayashi, M. Tabuchi, “Structure and electrochemical properties of LiFexMn2-xO4 (0 <= x <= 0.5) spinel as 5 V electrode material for lithium batteries”, J. Electrochem. Soc., 148(7) (2001) A730-A736
    50. H. Kawai, M. Nagata, H. Tukamoto, A.R. West, “A new lithium cathode LiCoMnO4: Toward practical 5 V lithium batteries”, Electrochem. Solid-State Lett., 1(5) (1998) 212-214
    51. Y.K. Yoon, C.W. Park, H.Y. Ahn, D.H. Kim, Y.S. and Lee, J. Kim “Synthesis and characterization of spinel type high-power cathode materials LiMxMn2-xO4 (M = Ni, Co, Cr)”, J. Phys. Chem. Solids, 68(5-6) (2007) 780-784.
    52. Y.K. Sun, K.J. Hong, J. Parakash and K. Amine, "Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures”, Electrocem. Commun., 4(4) (2002) 344-348
    53. Y.K. Sun, C.S. Yoon, I.H. Oh, “Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures”, Electrochimica Acta, 48(5) (2003) 503-506
    54. Y.K. Sun, Y.S. Lee, M. Yoshio, “Synthesis and electrochemical properties of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode material for lithium secondary batteries”, J. Electrochem. Soc., 150(5) (2003) L11-L11
    55. B. Markovsky, Y. Talyossef, G. Salitra, D. Aurbach, H.J. Kim and S. Choi, “Cycling and storage performance at elevated temperatures of LiNi0.5Mn1.5O4 positive electrodes for advanced 5 V Li-ion batteries”, Electrochem. Commun., 6(8) (2004) 821-826.
    56. B. Markovsky, Y. Talyossef, G. Salitra, D. Aurbach, H.J. Kim and S. Choi, “The study of LiNi0.5Mn1.5O4 5-V cathodes for Li-ion batteries”, J. Power Sources, 146 (2005) 664-669
    57. B. Markovsky, Y. Talyossef, G. Salitra, D. Aurbach, H.J. Kim and S. Choi, ”Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells”, J. Power. Sources, 162 (2006) 780-789.
    58. D. Kovacheva, B. Markovsky, G. Salitra, Y. Talyosef, M. Gorova, E. Levi, M. Riboch, H.J. Kim and D. Aurbach, “Electrochemical behavior of electrodes comprising micro- and nano-sized particles of LiNi0.5Mn1.5O4: A comparative study”, Electrochimica Acta, 50 (2005), 5553-5560
    59. D. Kovacheva, B. Markovsky, G. Salitra, Y. Talyosef, M. Gorova, E. Levi, M. Riboch, H.J. Kim and D. Aurbach, “Comparing the Behavior of Nano- and Microsized Particles of LiMn1.5Ni0.5O4 Spinel as Cathode Materials for Li-Ion Batteries”, J. Electrochem. Soc., 154 (2007) A682-A691
    60. W. Choi and A. Manthiram, “Comparison of Metal Ion Dissolutions from Lithium Ion Battery Cathodes”, J. Electrochem. Soc., 153, (2006) A1760-A1764.
    61. M. Kunduraci and G.G. Amatuccia, “The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+delta Ni0.5-delta O4 spinel lithium-ion battery cathodes”, Electrochimica Acta. 53 (2008) 4193-4199
    62. T.F. Yi and X.G. Hu, “Preparation and characterization of sub-micro LiNi0.5−xMn1.5+xO4 for 5V cathode materials synthesized by an ultrasonic-assisted co-precipitation method”, J. Power. Sources, 167 (2007) 185-191
    63. J.-H. Kim, S.-T. Myung, Y.-K. Sun, “Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery”, Electrochimica Acta, 49 (2004) 219–227
    64. L. Wen, Q. Lu and G.X. Xu, “Molten salt synthesis of spherical LiNi0.5Mn1.5O4 cathode materials”, Electrochimica Acta, 51 (2006) 4388–4392.
    65. K. Kanamura and W. Hoshikawa, “Electrochemical reaction of 5 V cathode LiNi0.4Mn1.6O4”, Solid State Ionics, 177 (2006) 113–119.
    66. H. Fang, Z. Wang, B. Zhang, X Li and G. Li, “LiNi0.5Mn1.5O4 cathode materials synthesized by a combinational annealing method” Electrochem. Commun., 9 (2007) 1077–1082.
    67. H. Fang, Z. Wang, X. Li, H. Guo and W. Peng, “Exploration of high capacity LiNi0.5Mn1.5O4 synthesized by solid-state reaction”, J, Power Sources, 153 (2006) 174–176.
    68. Y.K. Yoon, C.W. Park, H.Y. Ahn, D.H. Kim, Y.S. Le, and J. Kim, “Synthesis and characterization of spinel type high-power cathode materials LiMxMn2-xO4 (M= Ni, Co, Cr), J. Phys. Chem. Solids, 68 (2007) 780–784.
    69. M. G. Lazarraga, L. Pascual, H. Gadjov, D. Kovacheva, K. Petrov, J. M. Amarilla, R. M. Rojas, M. A. Martin-Luengo and J. M. Rojo, “Nanosize LiNiyMn2 –yO4 (0 <y<0.5) spinels synthesized by a sucrose-aided combustion method. Characterization and electrochemical performance”, J. Mater. Chem., 14 (2004) 1640-1647.
    70. R.M. Rojas, J.M. Amarilla, L. Pascual, J.M. Rojo, D. Kovacheva and K. Petrov, “Combustion synthesis of nanocrystalline LiNiYCo1−2YMn1+YO4 spinels for 5V cathode materials Characterization and electrochemical properties”, J. Power Sources, 160 (2006) 529–535.
    71. R.M. Rojas, J.M. Amarilla, L. Pascual, J.M. Rojo, D. Kovacheva and K. Petrov, M.G. Lazarraga, I. Lejona and J.M. Rojo, “Nanosized LiMYMn2−YO4 (M =Cr, Co and Ni) spinels synthesized by a sucrose-aided combustion method Structural characterization and electrochemical properties”, J. Power Sources, 174 (2007) 1212–1217
    72. A. Caballero, M. Cruz, L. Hern´an, M. Melero, J. Morales and E.R. Castell´on, “Nanocrystalline materials obtained by using a simple, rapid method for rechargeable lithium batteries”, J. Power Sources 150 (2005) 192–201.
    73. J. C. Arrebola, A. Caballero, M. Cruz, L. Hernán, J. Morales, E.R. Castellón, “Crystallinity Control of a Nanostructured LiNi0.5Mn1.5O4 Spinel via Polymer-Assisted Synthesis: A Method for Improving Its Rate Capability and Performance in 5 V Lithium Batteries”, Adv. Funct. Mater., 16 (2006) 1904–1912.
    74. J.C. Arrebola, A. Caballero, L. Hern ´an, J. Morales, “PMMA-assisted synthesis of Li1−xNi0.5Mn1.5O4 for high-voltage lithium batteries with expanded rate capability at high cycling temperatures”, J. Power Sources, 180 (2008) 852–858.
    75. J. C. Arrebola, A. Caballero, L. Hernán, and J. Morales, “Improving the Performance of Lithium-Ion Batteries by Using Spinel Nanoparticles”, J. Nanomater., 2008 (2008) Article ID 6593971
    76. J. C. Arrebola, A. Caballero, L. Hernán, and J. Morales, “Polymer-Mediated Growth of Highly Crystalline Nano- and Micro-Sized LiNi0.5Mn1.5O4 Spinels”, Eur. J. Inorg. Chem., 21 (2008) 3295–3302.
    77. Y.S Lee, Y.K. Sun, S. Ota, T. Miyashita, M. Yoshio, Electrochem. Commun., 4, 989 (2002).
    78. U. Lafont, C. Locati, E.M. Kelder, ”Nanopowders of spinel-type electrode materials for Li-ion batteries”, Solid State Ionics, 177 (2006) 3023–3029
    79. C. Locatia, U. Lafonta, L. Simonina, F. Oomsb and E.M. Keldera, “Mg-doped LiNi0.5Mn1.5O4 spinel for cathode materials”, J, Power Sources, 174 (2007) 847-851
    80. M. Kunduraci, J.F. Al-Sharab and G..G.. Amatucci, “High-Power Nanostructured LiMn2-xNixO4 High-Voltage Lithium-Ion Battery Electrode Materials: Electrochemical”, Chem. Mater. 2006, 18, 3585-3592
    81. M. Kunduraci and G..G. Amatucci, “Synthesis and Characterization of Nanostructured 4.7 V LixMn1.5Ni0.5O4 Spinels for High-Power Lithium-Ion Batteries”, J. Electrochem. Soc., 153 (2006) A1345-A1352.
    82. M. Kunduraci and G..G. Amatucci, “Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2−xNixO4 (0.50≥x≥0.36) spinels”, J. Power Sources, 165 (2007) 359–367
    83. H. Fang, L. Li and G. Li, “A low-temperature reaction route to high rate and high capacity LiNi0.5Mn1.5O4”, J. Power Sources, 167 (2007) 223–227
    84. A.K. Hjelm and G. Lindbergh, “Experimental and theoretical analysis of LiMn2O4 cathodes for use in rechargeable lithium batteries by electrochemical impedance spectroscopy (EIS)”, Electrochimica Acta, 47 (2002) 1747–1759
    85. Y. Fan, J. Wang, Z. Tang, W. Hea and J. Zhang, “Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries”, Electrochimica Acta, 52 (2007) 3870–3875.
    86. S.T. Myung, K. Izumi, S. Komaba, Y.K. Sun, H. Yashiro and N. Kumaga, “Role of Alumina Coating on Li-Ni-Co-Mn-O Particles as Positive Electrode Material for Lithium-Ion Batteries”, Chem. Mater., 17 (2005) 3695-3704.
    87. J. Liu, N. Liu, D. Liu, Y. Bai, L. Shi, Z. Wang, L. Chen, V. Hennige and A. Schuchb, “Improving the Performances of LiCoO2 Cathode Materials by Soaking Nano-Alumina in Commercial Electrolyte”, J. Electrochem. Soc., 154(1) (2007) A55-A63
    88. J. Liu, N. Liu, D. Liu, Y. Bai, L. Shi, Z. Wang and L. Chen, “New concept of surface modification to LiCoO2”, J. Power Sources, 174 (2007) 328–334.
    89. S. Verdier, L. El Ouatani, R. Dedryvère, F. Bonhomme, P. Biensan and D. Gonbeaua, “XPS Study on Al2O3- and AlPO4-Coated LiCoO2 Cathode Material for High-Capacity Li Ion Batteries”, J. Electrochem. Soc., 154(12) (2007) A1088-A1099
    90. D. Guyomard and J.M. Tarascon, “High voltage stable liquid electrolytes for Lil+xMn2O4/carbon rocking-chair lithium batteries “,J. Power Sources, 54 (1995) 92-98.
    91. H. Lee, S. Choi, S. Choi, H.J. Kim, Y. Choi, S. Yoon and J.J. Cho, “SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5 V Li-ion batteries”, Electrochemistry Communications, 9 (2007) 801–806.
    92. J. Arrebola, A. Caballero, L. Hern´an, M. Melero, J. Morales, E.R. Castellon, “Electrochemical properties of LiNi0.5Mn1.5O4 films prepared by spin-coating deposition”, J. Power Sources, 162 (2006) 606–613.
    93. C.Y. Kim, J. Sol-Gel Sci. Technol., 33, 307 (2005)
    94. R. Parra, M. S. Góes, M. S. Castro, E. Longo, P. R. Bueno, J. A. Varela, Chem. Mater, 20, 143 (2008)
    95. J. Chandradass, J.H. Yoon, D.S. Bae, Materials Science and Engineering A, 473, 360 (2008)
    96. J.H. Kim, S.T. Myung, C.S. Yoon, S.G. Kang, Y.K. Sun, Chem. Mater., 16, 906 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE