簡易檢索 / 詳目顯示

研究生: 李宜恬
Li, Yi-Tian
論文名稱: 高分子薄膜表面聲波感測器應用於低濃度氣體量測
Polymer-Coated Surface Acoustic Wave Sensor for Low Concentration Gas Detection
指導教授: 饒達仁
Yao, Da-Jeng
口試委員: 施文彬
王玉麟
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 67
中文關鍵詞: 表面聲波氣體感測器氨氣低濃度氣體高分子材料電子鼻
外文關鍵詞: SAW gas sensor, ammonia, low concentration gas, polymer films, E-nose
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以表面聲波原理為核心基礎,進行可攜式氣體污染源檢測之系統的研發,目標以微型化與高靈敏化,大大提升表面聲波感測器的精準度和可攜式的實現。其次結合多種奈米等級的化學感測薄膜,設計並合成具有高表面積/體積比以及特定化學活性的奈米孔洞高分子材料,可提高感測系統的靈敏度及選擇性,並希望於整合薄膜後,使氣體感測器具有可回復性與高靈敏度,以用於即時偵測之感測器。再者,加上感測系統的電訊號處理,亦將由電路設計與系統整合,進行低耗能與高精準度的感測電路開發,以完成可攜式電子鼻氣體感測器。目前研究進行中,已量測最低濃度為4ppm之氨氣,且化學薄膜的使用壽命可達至少半年。此感測器對於低濃度氣體量測亦能應用在其他工業安全與環境氣體偵測上,希冀此氣體感測可以更為廣泛地被大眾應用於日常生活。


    摘要 i Abstract ii 致謝 iii 第一章 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻探討 4 2.1 人工嗅覺系統 4 2.2 氣體感測器種類 5 2.2.1 半導體型感測器 6 2.2.2 電化學感測器 (Electrochemical sensors) 8 2.2.3 光感測器(Fluorescent Odor Sensors) 9 2.2.4 石英晶體微量天平(Quartz-Crystal Microbalance, QCM) 10 2.2.5 表面聲波感測器(Surface Acoustic wave, SAW) 11 2.2.6 各種電子鼻之比較 12 2.3 表面聲波(Surface Acoustic Wave, SAW)簡介 14 第三章 表面聲波基本理論 16 3.1 壓電理論 16 3.1.1 壓電效應(Piezoelectric Effect) 16 3.1.2 壓電材料(Piezoelectric Substrate) 18 3.1.3 機電偶合係數(Electromechanical Coupling Coefficient, K2) 19 3.1.4 延遲溫度係數(Temperature Coefficient of Delay,TCD) 20 3.1.5 壓電基材的傳遞損失 (Transmission Loss of Substrate) 21 3.2 指叉式電極換能器 (Interdigital Transducers, IDT) 22 3.3 質量負載效應 (SAW Mass Loading) 25 3.4 頻率飄移效應 (Frequency Shift) 26 第四章 表面聲波感測元件設計 28 4.1 表面聲波元件的感測機制 28 4.2 表面聲波晶片的製程 29 4.3 塗佈高分子薄膜 34 4.4 表面聲波震盪電路 39 4.5 量測環境系統 43 第五章 量測實驗結果 45 5.1 高分子薄膜造成的下降量量測與感測器輸出訊號量測 45 5.2 穩定性量測結果 48 5.3 低濃度氣體量測結果 50 5.4 低濃度氣體量測修正項 59 第六章 結論 63 第七章 參考文獻 64  

    1. Caliendo, C., et al., ORGANOMETALLIC POLYMER MEMBRANE FOR GAS-DETECTION APPLIED TO A SURFACE-ACOUSTIC-WAVE SENSOR. Sensors and Actuators B-Chemical, 1995. 25(1-3): p. 670-672.
    2. Sequoia Ecosystem and Recreation Preserve Act of 1999. 1999.
    3. Horvath, I., et al., Exhaled biomarkers in lung cancer. European Respiratory Journal, 2009. 34(1): p. 261-275.
    4. Gardner, J.W., et al., An electronic nose system for monitoring the quality of potable water. Sensors and Actuators B-Chemical, 2000. 69(3): p. 336-341.
    5. Barie, N., M. Bucking, and M. Rapp, A novel electronic nose based on miniaturized SAW sensor arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of volatile organic compounds in food quality monitoring. Sensors and Actuators B-Chemical, 2006. 114(1): p. 482-488.
    6. Hines, E.L., E. Llobet, and J.W. Gardner, Neural network based electronic nose for apple ripeness determination. Electronics Letters, 1999. 35(10): p. 821-823.
    7. Wohltjen, H. and R. Dessy, SURFACE ACOUSTIC-WAVE PROBE FOR CHEMICAL-ANALYSIS .1. INTRODUCTION AND INSTRUMENT DESCRIPTION. Analytical Chemistry, 1979. 51(9): p. 1458-1464.
    8. Pestov, D., et al., Improving the stability of surface acoustic wave (SAW) chemical sensor coatings using photopolymerization. Sensors and Actuators B-Chemical, 2007. 126: p. 557-561.
    9. Wen, W., et al., Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator. Sensors and Actuators B-Chemical, 2007. 125(2): p. 422-427.
    10. 馬至欽, 人類嗅覺的延伸---電子鼻. 豪微科技專輯, 1999.
    11. 路煒, 電子鼻的開發與應用簡述. 2005.
    12. 孫又予, 淺談表面聲波電子元件. 科學月刊全文資料庫, 1975.
    13. Gas leakage detector with semiconductor|with conductivity changed by gas adsorption. 1970, N Taguchi.
    14. Seiyama, T., A new detector for gaseous components using semi-conductive thin films. Anal. Chem., 1962. 34: p. 1502-1503.
    15. Pearce, T.C., electronic nose technology. 2003: Wiley-VCH.
    16. Suslick, K.S., N.A. Rakow, and A. Sen, Colorimetric sensor arrays for molecular recognition. Tetrahedron, 2004. 60(49): p. 11133-11138.
    17. Pearton, S.J., et al., Recent advances in wide bandgap semiconductor biological and gas sensors. Progress in Materials Science, 2010. 55(1): p. 1-59.
    18. J, J., Anal. Chem., 1992. 64: p. 196-198.
    19. vanderWal, P.D., N.F. deRooij, and M. KoudelkaHep, Extremely stable Nafion based carbon monoxide sensor. Sensors and Actuators B-Chemical, 1996. 35(1-3): p. 119-123.
    20. Li, N.T., T. C.; Zeng, H. C. J. , Electrochem. Soc., 1993. 140: p. 1068.
    21. Kateb, B., et al., Sniffing out cancer using the JPL electronic nose: A pilot study of a novel approach to detection and differentiation of brain cancer. Neuroimage, 2009. 47: p. T5-T9.
    22. Ballantine, D.S., ed. Acoustic wave sensors: theory, design, and physico- chemical applications. ed. A. Press. 1997.
    23. T. Nomura, Y.F., M. Kitora, Y. Matsuura, I. Aso, Sens Actuators, 1998. 52: p. 90–95

    24. N. Miura, T.R., G. Lu, N. Yamazoe, Sens Actuators, B, 1998. 47(
    ): p. 84–91

    25. M. Ando , T.K., M. Haruta, Sens Actuators, 1995. 2425: p. 851-853

    26. P.D. van der Wal, N.F.d.R., M. Koudelka-Hep, Sens Actuators, 1996. 35-36: p. 119-123

    27. J. Chena, A.H., R. Strzodaa , M. Fleischera and M. C. Amannb, Procedia Chemistry 2009. 1: p. 1383–1386

    28. Rayleigh, L., On waves propagated along the plane surface of an elastic solid. Proc. London Math. Soc., 1885. 17: p. 4.
    29. White, R.M., Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett., 1965
    7: p. 314-316.
    30. Campbell, J.J., A method for estimation estimation optical crystal cuts and propagation directions for excitation of piezoelectric surface waves. IEEE Trans., 1968.
    31. Fahmy, A.H., Propagation of acoustic surface waves in multilayers:A matrix description. Appl. Phy., 1973. 22: p. 495-497.
    32. Drafts, B., Acoustic wave technology sensors. Ieee Transactions on Microwave Theory and Techniques, 2001. 49(4): p. 795-802.
    33. Campbell, C., Surface Acoustic Wave Devices and Their Signal Processing Applications. Academic Press, 1989.
    34. 吳朗, 電子陶瓷/壓電. 中華民國八十三年, 全欣資訊: 台灣.
    35. 邱碧秀, 電子陶瓷材料. 中華民國七十七年, 台灣: 徐氏基金會.
    36. Campbell, C.K., Surface acoustic wave devices for mobile and wireless communications. Academic Press, 1998.
    37. Varadan, V.K. and V.V. Varadan, Microsensors, MEMS and their applications in smart structures and devices. Smart Materials and Structures, 1999: p. 683-691.
    38. K., H., Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation. Springer, 2000.
    39. Supriyo, D., Surface Acoustic Wave Devices. NJ:Prentice-Hall, 1985.
    40. Hashimoto, K.-y., Surface Acoustic Wave Device in Telecommunications- Modeling and Simulation. Springer, 2000.
    41. 陳盈樹, 低損耗梯形中頻表面聲波濾波器之研究. 國立成功大學電機研究所. 中華民國九一年.
    42. Maines, J.D. and E.G.S. Paige, SURFACE-ACOUSTIC-WAVE DEVICES FOR SIGNAL-PROCESSING APPLICATIONS. Proceedings of the Ieee, 1976. 64(5): p. 639-652.
    43. Kashiwa, K., et al., Improvement of Detection System for a Fast-Scanning and Phase-Sensitive Laser Probe for Surface Acoustic Wave Devices in 2GHz Range. Japanese Journal of Applied Physics, 2008. 47(5): p. 4108-4110.
    44. 高國陞, 表面聲波元件之頻率及溫度特性之研究. 博士論文, ed. 國立中山大學電機工程所. 中華民國九十三年.
    45. Stephen, B.D., Acoustic wave sensors:theory, design, and physico-chemical applications. . 1996.
    46. 楊永瑞, 以表面聲波震盪電路為基礎之生化感測系統. 2005.
    47. 陳玫菁, 表面聲波氣體感測器應用於低濃度氨氣偵測與集群分析辨識. 清華大學,碩士論文. 中 華 民 國 九 十 九 年.
    48. Adel S. Sedra, K.C.S., ed. Microelectronic circuits 2004, Oxford university press.
    49. Van Quy, N., et al., Gas sensing properties at room temperature of a quartz crystal microbalance coated with ZnO nanorods. Sensors and Actuators B: Chemical, 2011. 153(1): p. 188-193.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE