簡易檢索 / 詳目顯示

研究生: 蔡勖升
Tsai, Hsu-Sheng
論文名稱: 新穎簡易電漿佈植輔助製程應用於單元素二維材料合成及材料性質量測
Facile Synthesis and Measurements of Single-Elemental Two-Dimensional Materials via Plasma Implantation Assisted Process
指導教授: 闕郁倫
Chueh, Yu-Lun
梁正宏
Liang, Jenq-Horng
口試委員: 王偉華
王冠文
戴念華
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 46
中文關鍵詞: 二維材料電漿
外文關鍵詞: two dimensional materials, plasma
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,二維材料的合成與成長被廣泛研究,其目的在於取得可尺度化之高品質二維材料並且簡化製程。目前較成熟之二維材料取得技術中,機械剝離方法受限於材料尺度太小,而化學氣相沉積於金屬基板之二維材料必須以複雜且難以控制之轉移方法來達成元件製作的最終目的,此轉移方法過程中之化學溶液也會劣化二維材料品質,超高真空磊晶成長雖能達到高品質需求,但成長速度太慢且成本昂貴,其他特定合成方法由於製程參數門檻相當高(例如:超高溫高壓製程),因此也不具實際應用潛力。本研究提出之電漿佈植輔助製程已成功被應用於合成三種單元素二維材料,其中包括碳化矽基板上合成多層石墨烯、矽鍺磊晶層上合成多層鍺烯以及磷化銦基板上合成多層紫磷烯。本製程幾乎克服上述大部分技術問題且僅分為兩部分,分別是電漿柨植及熱處理,本研究確認此電漿佈植輔助製程應用於合成單一元素二維材料之可行性並且初步得知其優越物理特性。


    Synthesis and growth of two-dimensional (2D) materials have been extensively investigated in order to achieve high quality, scalability, and reduce the complexity of process in recent years. Mechanical exfoliation is a quite unpractical method owing to the scale limitation while chemical vapor deposition (CVD) on metal substrates must be combined with the manual transfer step, which seriously damages the materials for device applications. Ultrahigh vacuum (UHV) growth cannot accomplish the high production and reduce the cost of process. The conditions of some particular syntheses are quite difficult to be performed, thus they do not have potential for commercialization. This study announces that a facile synthesis method, so called plasma implantation assisted process, has been successfully utilized to synthesize three single-elemental 2D materials including multi-layered graphene on SiC, germanene on SiGe/Si, and violet phosphorene on InP. The process divided into plasma implantation and thermal treatment almost solves all of the issues mentioned above. In addition to demonstrate the feasibility of plasma implantation assisted process for synthesis of the single-elemental 2D materials, superior properties of these 2D materials were measured for seeking real applications.

    Chinese Abstract i Abstract ii Acknowledgements iii Chapter 1 Introduction 1 1.1 The Advent of Two-Dimensional Materials 1 1.1.1 Graphene 1 1.1.2 Silicene and Germanene 3 1.1.3 Phosphorene 3 1.2 Thermodynamic Concept of Synthesis 5 Chapter 2 Experiments 6 2.1 Plasma-Assisted Selective Reaction Process 6 2.1.1 Synthesis of Multi-Layered Graphene on SiC 6 2.1.2 Synthesis of Multi-Layered Germanene on SiGe/Si 7 2.1.3 Synthesis of Multi-Layered Violet Phosphorene on InP 7 2.2 Material Analyses and Characterizations 7 2.2.1 Raman Spectrometer 8 2.2.2 X-ray Photoemission Spectrometer (XPS) 8 2.2.3 Transmission Electron Microscope (TEM) 8 2.2.4 Secondary Ion Mass Spectrometer (SIMS) 8 2.2.5 Semiconductor Characterization System 9 2.2.6 Semiconductor Parameter Analyzer 9 Chapter 3 Multi-Layered Graphene on SiC 10 3.1 Process Optimization and Quality Evaluation 10 3.2 Surface Composition Analysis 13 3.3 Nanostructure Analysis and Formation Mechanism 14 3.4 Electrical Measurement and Device Application 17 Chapter 4 Multi-Layered Germanene on SiGe/Si 23 4.1 Initial Identification of Material 23 4.2 Surface Composition Analysis 24 4.3 Nanostructure Analysis and Formation Mechanism 26 4.4 Large-Scale Demonstration for Future Application 29 Chapter 5 Multi-Layered Violet Phosphorene on InP 31 5.1 Process Optimization and Quality Evaluation 31 5.2 Surface Composition Analysis 33 5.3 Nanostructure Analysis and Formation Mechanism 34 5.4 Evaluation of Electrical Property 35 Chapter 6 Conclusions and Future Work 38 References 39

    [1] L. Zhang, J. Wang, J. Zhu, X. Zhang, K. S. Hui, K. N. Hui, J. Mater. Chem. A 2013, 1, 9046.
    [2] H. Bi, S. Sun, F. Huang, X. Xie, M. Jiang, J. Mater. Chem. 2012, 22, 411.
    [3] Y. T. Kim, H. W. Shin, Y. S. Ko, T. K. Ahn, Y. U. Kwon, Nanoscale 2013, 5, 1483.
    [4] Y. Zhu, Z. Sun, Z. Yan, Z. Jin, J. M. Tour, ACS Nano 2011, 5, 6472.
    [5] M. S. Lee, K. Lee, S. Y. Kim, H. Lee, J. Park, K. H. Choi, H. K. Kim, D. G. Kim, D. Y. Lee, S. W. Nam, J. U. Park, Nano Lett. 2013, 13, 2814.
    [6] Z. Jiang, J. Wang, L. Meng, Y. Huang, L. Liu, Chem. Commun. 2011, 47, 6350.
    [7] L. S. Zhang, W. D. Wang, X. Q. Liang, W. S. Chu, W. G. Song, W. Wang, Z. Y. Wu, Nanoscale 2011, 3, 2458.
    [8] R. K. Paul, S. Badhulika, N. M. Saucedo, A. Mulchandani, Anal. Chem. 2012, 84, 8171.
    [9] W. Li, X. Geng, Y. Guo, J. Rong, Y. Gong, L. Wu, X. Zhang, P. Li, J. Xu, G. Cheng, M. Sun, L. Liu, ACS Nano 2011, 5, 6955.
    [10] J. L. Xia, F. Chen, P. Wiktor, D. K. Ferry, N. J. Tao, Nano Lett. 2010, 10, 5060.
    [11] G. P. Keeley, A. O’Neill, N. McEvoy, N. Peltekis, J. N. Colemanac, G. S. Duesberg, J. Mater. Chem. 2010, 20, 7864.
    [12] X. Lu, H. Qi, X. Zhang, Z. Xue, J. Jin, X. Zhou, X. Liu, Chem. Commun. 2011, 47, 12494.
    [13] H. J. Chen, Z. H. Zhang, R. Cai, X. Q. Kong, X. Chen, Y. N. Liu, S. Z. Yao, Analyst 2013, 138, 2769.
    [14] X. Mao, H. Su, D. Tian, H. Li, R. Yang, ACS Appl. Mater. Interfaces 2013, 5, 592.
    [15] O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, C. Galiotis, Nat. Commun. 2011, 2:255, 1.
    [16] H. Pei, J. Li, M. Lv, J. Wang, J. Gao, J. Lu, Y. Li, Q. Huang, J. Hu, C. Fan, J. Am. Chem. Soc. 2012, 134, 13843.
    [17] L. Lin, Y. Liu, L. Tang, J. Li, Analyst 2011, 136, 4732.
    [18] R. K. Srivastava, S. Srivastava, T. N. Narayanan, B. D. Mahlotra, R. Vajtai, P. M. Ajayan, A. Srivastava, ACS Nano 2012, 6, 168.
    [19] B. G. Choi, H. S. Park, M. H. Yang, Y. M. Jung, S. Y. Lee, W. H. Hong, T. J. Park, Nanoscale 2010, 2, 2692.
    [20] C. X. Guo, S. R. Ng, S. Y. Khoo, X. Zheng, P. Chen, C. M. Li, ACS Nano 2012, 6, 6944.
    [21] M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, M. Potemski, Phys. Rev. Lett. 2008,101, 267601.
    [22] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
    [23] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312.
    [24] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 2009, 457, 406.
    [25] W. C. Yen, Y. Z. Chen, C. H. Yeh, J. H. He, P. W. Chiu, Y. L. Chueh, Scientific Reports 2014, 4, 4379.
    [26] C. H. Yeh, H. Medina, C. C. Lu, K. P. Huang, Z. Liu, K. Suenaga, P. W. Chiu, ACS Nano 2014, 8, 275.
    [27] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, T. Seyller, Nat. Mater. 2009, 8, 203.
    [28] J. Ristein, Science 2006, 313, 1057.
    [29] H. Medina, Y. C. Lin, D. Obergfell, P. W. Chiu, Adv. Funct. Mater. 2011, 21, 2687.
    [30] T. Kato, R. Hatakeyama, ACS Nano 2012, 6, 8508.
    [31] S. H. Pan, H. Medina, L. J. Chou, Z. Wang, K. H. Chen, L. C. Chen, Y. L. Chueh, Nanoscale, 2014, 6, 8635.
    [32] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Nat. Mater. 2007, 6, 652.
    [33] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, H. Dai, Science 2009, 324, 768.
    [34] I. V. Lightcap, T. H. Kosel, P. V. Kamat, Nano Lett. 2010, 10, 577.
    [35] W. H. Lee, J. W. Suk, J. Lee, Y. Hao, J. Park, J. W. Yang, H. W. Ha, S. Murali, H. Chou, D. Akinwande, K. S. Kim, R. S. Ruoff, ACS Nano 2012, 6, 1284.
    [36] S. Guo, M. Ghazinejad, X. Qin, H. Sun, W. Wang, F. Zaera, M. Ozkan, C. S. Ozkan, Small 2012, 8, 1073.
    [37] Z. Yan, J. Yao, Z. Sun, Y. Zhu, J. M. Tour, Small 2012, 8, 59.
    [38] B. N. Szafranek, D. Schall, M. Otto, D. Neumaier, H. Kurz, Nano Lett. 2011, 11, 2640.
    [39] M. Kim, N. S. Safron, C. Huang, M. S. Arnold, P. Gopalan, Nano Lett. 2012, 12, 182.
    [40] U. Bangert, W. Pierce, D. M. Kepaptsoglou, Q. Ramasse, R. Zan, M. H. Gass, J. A. Van den Berg, C. B. Boothroyd, J. Amani, H. Hofsäss, Nano Lett. 2013, 13, 4902.
    [41] A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
    [42] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 2011, 6, 147.
    [43] Y. Zhang, T. R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, Z. X. Shen, Nat. Nanotechnol. 2014, 9, 111.
    [44] T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, A. Mishchenko, Nat. Nanotechnol. 2013, 8, 100.
    [45] J. A. Yan, R. Stein, D. M. Schaefer, X. Q. Wang, M. Y. Chou, Phys. Rev. B 2013, 88, 121403.
    [46] Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, J. Lu, Nano Lett. 2012, 12, 113.
    [47] R. Quhe, R. Fei, Q. Liu, J. Zheng, H. Li, C. Xu, Z. Ni,Y. Wang, D. Yu, Z. Gao, J. Lu, Sci. Rep. 2012, 2, 853.
    [48] M. Yea, R. Quhe, J. Zheng, Z. Ni, Y. Wang, Y. Yuan, G. Tse, J. Shi, Z. Gao, J. Lu, Physica E 2014, 59, 60.
    [49] Y. Wang, Y. Ding, Solid State Comm. 2013, 155, 6.
    [50] W. Wei, Y. Dai, B. Huang, T. Jacob, Phys. Chem. Chem. Phys. 2013, 15, 8789.
    [51] N. J. Roome, J. D. Carey, ACS Appl. Mater. Interfaces 2014, 6, 7743.
    [52] A. O’Hare, F. V. Kusmartsev, K. I. Kugel, Nano Lett. 2012, 12, 1045.
    [53] B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K. Wu, Nano Lett. 2012, 12, 3507.
    [54] L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W. A. Hofer, H. J. Gao, Nano Lett. 2013, 13, 685.
    [55] A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Y. Takamura, Phys. Rev. Lett. 2012, 108, 245501.
    [56] L. Li, S. Lu, J. Pan, Z. Qin, Y. Wang, Y. Wang, G. Cao, S. Du, H. J. Gao, Adv. Mater. 2014, 26, 4820.
    [57] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372.
    [58] F. Xia, H. Wang, Y. Jia, Nat. Commun. 2014, 5, 4458.
    [59] S. Lange, P. Schmidt, T. Nilges, Inorg. Chem. 2007, 46, 4028.
    [60] L. I. Berger, Semiconductor materials, CRC Press 1996, p. 84.
    [61] V. H. Thurn, H. Krebs, Acta Cryst. 1969, B25, 125.
    [62] R. Curry, Hittorf’s Metallic Phosphorus of 1865. Lateral Science 2012; http://lateralscience.blogspot.com/2012/07/main-menu-click-above-p-h-o-s-p-h-o-r-u.html (accessed July 08, 2012).
    [63] W. Hittorf, Zur Kenntniss des Phosphors. Annalen der Physik 1865, 202, 193.
    [64] H. G. Lee, Chemical thermodynamics for metals and materials, Imperial College Press 1999, p. 283.
    [65] H. S. Tsai, C. C. Lai, H. Medina, S. M. Lin, Y. C. Shih, Y. Z. Chen, J. H. Liang, Y. L. Chueh, Nanoscale 2014, 6, 13861.
    [66] C. E. Giusca, S. J. Spencer, A. G. Shard, R. Yakimova, O. Kazakov, Carbon 2014, 69, 221.
    [67] I. Calizo, I. Bejenari, M. Rahman, G. Liu, A. A. Balandin, J. Appl. Phys. 2009, 106, 043509.
    [68] J. Röhrl, M. Hundhausen, F. Speck, Th. Seyller, Mater. Sci. Forum 2010, 645–648, 603.
    [69] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, Nat. Nanotechnol. 2008, 3, 210.
    [70] I. Gierz, C. Riedl, U. Starke, C. R. Ast, K. Kern, Nano Lett. 2008, 8, 4603.
    [71] J. Röhrl, M. Hundhausen, K. V. Emtsev, Th. Seyller, R. Graupner, L. Ley, Appl. Phys. Lett. 2008, 92, 201918.
    [72] J. Tsurumi, Y. Saito, P. Verma, Chem. Phys. Lett. 2013, 557, 114.
    [73] Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, J. T. L. Thong, Small 2010, 6, 195.
    [74] https://en.wikipedia.org/wiki/Beta_carbon_nitride#cite_note-ref5-5
    [75] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109.
    [76] J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, W. A. de Heer, Nature 2014, 1.
    [77] M. Y. Han, J. C. Brant, P. Kim, Phys. Rev. Lett. 2010, 104, 056801.
    [78] J. S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. M. Campbell, G. Jernigan, J. L. Tedesco, B. VanMil, R. Myers-Ward, C. Eddy Jr., D. K. Gaskill, IEEE Electron Device Lett. 2009, 30, 650.
    [79] C. Dimitrakopoulos, Y. M. Lin, A. Grill, D. B. Farmer, M. Freitag, Y. Sun, S. J. Han, Z. Chen, K. A. Jenkins, Y. Zhu, Z. Liu, T. J. McArdle, J. A. Ott, R. Wisnieff, P. Avouris, J. Vac. Sci. Technol. B 2010, 28, 985.
    [80] T. Shen, J. J. Gu, M. Xu, Y. Q. Wu, M. L. Bolen, M. A. Capano, L. W. Engel, P. D. Ye, Appl. Phys. Lett. 2009, 95, 172105.
    [81] S. Weingart, C. Bock, U. Kunze, K. V. Emtsev, Th. Seyller, L. Ley, Physica E 2010, 42, 687.
    [82] E. Scalise, M. Houssa, G. Pourtois, B. van den Broek, V. Afanas’ev, A. Stesmans, Nano Res. 2013, 6, 19.
    [83] V. A. Volodin, M. D. Efremov, V. A. Gritsenko, S. A. Kochubei, Appl. Phys. Lett. 1998, 73, 1212.
    [84] S. Wang, Phys. Chem. Chem. Phys. 2011, 13, 11929.
    [85] E. Cinquanta, E. Scalise, D. Chiappe, C. Grazianetti, B. van den Broek, M. Houssa, M. Fanciulli, A. Molle, J. Phys. Chem. C 2013, 117, 16719.
    [86] B. Kulnitskiy, I. Perezhogin, G. Dubitsky, V. Blank, Acta Cryst. B 2013, 69, 474.
    [87] H. Yang, D. Wang, H. Nakashima, H. Gao, K. Hirayama, K. Ikeda, S. Hata, H. Nakashima, Appl. Phys. Lett. 2008, 93, 072104.
    [88] A. G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys. 2003, 94, 2779.
    [89] G. Fasol, M. Cardona, W. Hönle, H. G. von Schnering, Solid State Commun. 1984, 52, 307.
    [90] B. Marcos, J. Ibáñez, R. Cuscó, F. L. Martínez, G. González-Díaz, L. Artús, Nucl. Instr. and Meth. Phys. Res. B 2001, 175-177, 252.
    [91] S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, N. Sugiyama, IEEE Trans. Electron Devices 2008, 55, 21.
    [92] H. S. Tsai, Y. Z. Chen, H. Medina, T. Y. Su, T. S. Chou, Y. H. Chen, Y. L. Chueh, J. H. Liang, Phys. Chem. Chem. Phys. 2015, DOI: 10.1039/c5cp02469b.
    [93] H. S. Tsai, C. C. Lai, C. H. Hsiao, H. Medina, T. Y. Su, H. Ouyang, T. H. Chen, J. H. Liang, Y. L. Chueh, ACS Appl. Mater. Interfaces 2015, 7, 13723.
    [94] J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, W. Jia, Optics & Laser Technology 2014, 59, 99.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE