研究生: |
黃哲偉 Huang, Chu-Wei |
---|---|
論文名稱: |
開發智慧型‟中途接駁”藥物傳遞系統 對深層腫瘤區域進行化療 Development of a Smart ‟Midway Pickup” Drug Delivery System for Chemotherapy to Tumor Hypoxic Regions |
指導教授: |
邱信程
Chiu, Hsin-Cheng |
口試委員: |
黃郁棻
張建文 駱俊良 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 藥物傳遞 、中途接駁 、缺氧區 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用具高度生物相容性的團聯型高分子 poly(ethylene glycol)-b-poly(histamine methacrylamide) (PEG-b-PHMA) 與兼具生物可降解性的高分子 poly(lactic-co-glycolic acid)-modified hyaluronic acid (HA) 於水溶液中與疏水性化療藥物 SN-38 自組裝形成載藥奈米複合微胞 (hybrid micelles),並利用此複合微胞對腫瘤微環境的特殊應答性,開創出新型“中途接駁”的藥物傳遞模式,改善化療藥物對深層腫瘤的治療效率。此智慧型載藥微胞系統粒徑大小約為 170奈米,藥物裝載效率及裝載量則分別可達製備微胞時進藥量的60%和高分子進料重的12 wt%。本研究的設計核心為,透過奈米粒子容易經由enhanced permeability and retention (EPR) effect快速且有效累積至腫瘤內後,再藉由腫瘤偏弱酸的微環境,促使微胞內 PEG-b-PHMA 高分子因大量 histidyl 基團質子化而脫離微胞,並暴露出微胞表面的對 CD44 受器具標的能力的 HA,提高載藥微胞對腫瘤組織內 CD44 受體過量表現的腫瘤巨噬細胞 (tumor-associated-macrophages, TAMs) 的結合能力。藉由於 PEG-b-PHMA 高分子上修飾螢光探針 Rhodamine B 和在 HA-g-PLGA 微胞的內部疏水核心中導入疏水螢光染劑 3,3´-dioctadecyloxacarbocyanine (DiO),可利用 Fluorescence resonance energy transfer (FRET) 效應分析PEG-b-PHMA 於模擬腫瘤弱酸環境 (pH 6.5) 中從微胞表面脫附的脫附情形,再搭配上流式細胞儀分析PEG-b-PHMA脫附後,複合微胞對巨噬細胞的標的能力,可簡單於體外實驗中評估本研究設計的可行性。研究結果證實於弱酸環境中PEG-b-PHMA不僅會迅速從表面微胞脫附,微胞對巨噬細胞標的能力亦會大幅增加。另一方面,由於微胞的藥物釋放是受微胞內部核心 PLGA 的降解情形調控,PLGA的緩慢降解將能有效提高藥物透過腫瘤巨噬細胞傳遞至深層腫瘤內部的機會。相信這也就是為何利用螢光顯微鏡觀察經靜脈注射載藥複合微胞的動物腫瘤模型,其腫瘤切片影像中複合微胞不僅能有效累積於腫瘤巨噬細胞,並且也會伴隨著巨噬細胞一同遷移至深層腫瘤內部甚至是缺氧區域,造成該區域的癌細胞凋亡。綜合上述,本研究結果充分證實我們開創的‟中途接駁”藥物傳遞設計概念的可行性,也證實此設計能有效克服傳統藥物傳遞模式對深層腫瘤區域藥物傳遞不彰的課題。
In this study, the biocompatible and biodegradable polymers, poly(lactic acid-co-glycolic acid)-modified hyaluronic acid (HA-g-PLGA) and PEG-b-poly(histamine methacrylamide) (PEG-b-PHMA) were employed to develop a smart midway-pickup drug delivery system for improving therapeutic efficacy of tumor hypoxia. The SN38-loaded polymer micelles were first attained by the self-assembly of HA-g-PLGA and SN38 in aqueous solution. To further functionalize these artificial micelles with superior in vivo colloidal stability and pH-responsive detachment of PEG chain segments, PEG-b-PHMA was deposited in sequence onto the assembly outer surfaces. Taking advantage of nano-sized particles for drug delivery, this drug-loaded nanoparticles can largely accumulate within tumors via the enhanced permeability and retention (EPR) effect. Once they arrive at tumor sites, the HMA residues of the PEG-b-PHMA copolymer prefer to protonate under the acidic tumor microenvironment. These hydrophilic PEG-b-PHMA copolymers are prone to disassociate from the shell of polymeric micelles. As the same time, the CD44 targeting ligand, HA, becomes exposed on the surface of polymer micelle. These HA-covered polymer micelles show excellent effective internalization behavior by tumor-associated macrophages (TAMs) within the solid tumor via CD44 receptor-mediated endocytosis. The internalized polymer micelles could be further transported to tumor hypoxia due to the inherent TAM tropism toward hypoxia. The drug liberation was achieved via degradation of PLGA segments under acidic environment such as tumor microenvironment or intracellular endosome and lysosome. The SN38 released from the TAMs could be further internalized by cancer cells, with thus efficiently inhibiting the cell proliferation. Our results strongly indicate that this “midway pickup” drug delivery strategy could enhance the antitumor efficacy of chemotherapy in tumor hypoxia, which may create a new opportunity for the current anti-cancer research.
參考文獻
1. Thanos D. Halazonetis, V.G.G., Jiri Bartek, An Oncogene-Induced DNA Damage Model for Cancer Development. science, 2008. 319: p. 1353-1355.
2. Sherr, C.J., Principles of Tumor Suppression. Cell, 2004. 116: p. 235–246.
3. M. S. Greenblatt, W.P.B., M. Hollstein, and C. C. Harris, Mutations in the p53 Tumor Suppressor Gene: Clues to Cancer Etiology and Molecular Pathogenesis. Cancer Research, 1994. 54: p. 4855-4878.
4. Michael Ho¨ckel, P.V., Tumor Hypoxia: Definitions and Current Clinical, Biologic, and Molecular Aspects. Journal of the National Cancer Institute, 2001. 93: p. 266-276.
5. L.Harris, A., HYPOXIA — A KEY REGULATORY FACTOR IN TUMOUR GROWTH. NATURE REVIEWS, 2002. 2: p. 38-47.
6. Michael I. Koukourakis, M.P., Alexandra Giatromanolaki, Alexandra Tsarouha, Alexandros Polychronidis, Efthimios Sivridis, Costantinos Simopoulos, Oxygen and glucose consumption in gastrointestinal adenocarcinomas: Correlation with markers of hypoxia, acidity and anaerobic glycolysis. Cancer science, 2006. 97: p. 1056–1060.
7. Teicher, B.A., Hypoxia and drug resistance. Cancer and Metastasis Reviews, 1994. 13: p. 139-168.
8. Shinae Kizaka-Kondoh, M.I., Hiroshi Harada, Masahiro Hiraoka, Tumor hypoxia: A target for selective cancer therapy. cancer science, 2003. 94: p. 1021–1028.
9. John E. Moulder, S.R., Tumor hypoxia: its impact on cancer therapy. Cancer and Metastasis Reviews, 1987. 5: p. 313-341.
10. Paola Allavena, A.S., Cecilia Garlanda, Alberto Mantovani, The tumor-associated macrophages in neoplastic progression and immune surveillance. Immunological Reviews, 2008. 222: p. 155-161.
11. Jinhyang Choi, H.-Y.K., Eun Jin Ju, Joohee Jung, Jaesook Park, Hye-Kyung Chung, Jin Seong Lee, Jung Shin Lee, Heon Joo Park, Si Yeol Song, Seong-Yun Jeong, Eun Kyung Choi, Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials, 2012. 33: p. 4195-4203.
12. LAWRENCE D. MAYER, G.D., TROY O. HARASYM and MARCEL B. BALLY, The Role of Tumor-Associated Macrophages in the Delivery of Liposomal Doxorubicin to Solid Murine Fibrosarcoma Tumors. THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 1996. 280: p. 1406–1414.
13. Claire Lewis, C.M., Macrophage Responses to Hypoxia Implications for Tumor Progression and Anti-Cancer Therapies. American Journal of Pathology, 2005. 167: p. 627-635.
14. Paola Allavena, A.S., Graziella Solinas, Chiara Porta, Alberto Mantovani, The inflammatory micro-environment in tumor progression:The role of tumor-associated macrophages. Critical Reviews in Oncology/Hematology, 2008. 66: p. 1-9.
15. Alberto Mantovani, T.S., Chiara Porta, Paola Allavena, Antonio Sica, Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev, 2006. 25: p. 315-322.
16. H. G. KEIZER, H.M.P., G. J. SCHUURHUISt, H. JOENJE, DOXORUBICIN (ADRIAMYCIN): A CRITICAL REVIEW OF FREE RADICAL-DEPENDENT MECHANISMS OF CYTOTOXICITY Pharmacology & Therapeutics, 1990. 47(2): p. 219-231.
17. Neena I Marupudi MS, J.E.H., Khan W Li MD, Violette M Renard MD, Betty M Tyler BA, Henry Brem, Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opinion on Drug Safety, 2007. 6: p. 609-621.
18. Dan Peer, J.M.K., Seungpyo Hong, Omid C. Farokhzad, Rimona Margalit, Robert Langer, Nanocarriers as an emerging platform for cancer therapy. nature nanotechnology, 2007. 2: p. 751-760.
19. Glen S. Kwon, T.k., Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews, 1996. 21: p. 107-116.
20. Long Xu, J.B., Hao Yin, Thomas J. Anchordoquy, Ligands located within a cholesterol domain enhance gene delivery to the target tissue. Journal of Controlled Release, 2012. 160: p. 57–63.
21. Annette Rösler, G.W.M.V., Harm-Anton Klok, Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Advanced Drug Delivery Reviews, 2012. 64: p. 270–279.
22. Youhua Tao, M.N., Huanyu Dou, A novel therapeutic system for malignant glioma: nanoformulation, pharmacokinetic, and anticancer properties of cell-nano-drug delivery. Nanomedicine, 2012.
23. Katrin Knop, R.H., Dagmar Fischer, and Ulrich S. Schubert, Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angewandte Chemie, 2010. 49: p. 6288 – 6308.
24. Yasuhiro Matsumura, H.M., A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Research, 1986. 46: p. 6387-6392.
25. Fan Yuan, M.D., Dai Fukumura, Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Research, 1995. 55: p. 3752-3756.
26. Jun Fang, H.N., Hiroshi Maeda, The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 2011. 63: p. 136–151.
27. Martin Hruby´, C.e.r.K.a.k., Karel Ulbrich, Polymeric micellar pH-sensitive drug delivery system for doxorubicin. Journal of Controlled Release, 2005. 103: p. 137–148.
28. Hyun-Jong Cho, H.Y.Y., Heebeom Koo, Seung-Hak Ko, Jae-Seong Shim, Ju-Hee Lee ,Kwangmeyung Kim , Ick Chan Kwon , Dae-Duk Kim, Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic for tumor-targeted delivery of docetaxel. Biomaterials, 2011. 32: p. 7181-7190.
29. JI EUN LEE, N.L., TAEHO KIM, JAEYUN KIM, TAEGHWAN HYEON, Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications. ACCOUNTS OF CHEMICAL RESEARCH, 2011. 44: p. 893–902.
30. Costas Kaparissides, S.A., Katerina Kotti and Sotira Chaitidou, Recent Advances in Novel Drug Delivery Systems. Azonano, 2006.
31. Xiao-Xia Yang, Z.-P.H., An-Long Xu, Wei Duan, Yi-Zhun Zhu, Min Huang, Fwu-Shan Sheu, Qiang Zhang, Jin-Song Bian, Eli Chan, Xiaotian Li, Jian-Cheng Wang, Shu-Feng Zhou, A Mechanistic Study on Reduced Toxicity of Irinotecan by Coadministered Thalidomide, a Tumor Necrosis Factor- Inhibitor. THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2006. 319: p. 82–104.
32. Eun Ju Oh, K.P., Ki Su Kim, Jiseok Kim, Jeong-A Yang, Ji-Hyun Kong, Min Young Lee, Allan S. Hoffman, Sei Kwang Hahn, Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. Journal of Controlled Release, 2010. 141: p. 2-12.
33. Shanthi Ganesh, A.K.I., David V. Morrissey, Mansoor M. Amiji, Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials, 2013. 34: p. 3489-3502.
34. Bing-Xiang Zhao, Y.Z., Yue Huang, Lin-Min Luo, Ping Song, Xin Wang, Su Chen, Ke-Fu Yu, Xuan Zhang, Qiang Zhang, The efficiency of tumor-specific pH-responsive peptide-modified polymeric micelles containing paclitaxel. Biomaterials, 2012. 33: p. 2508-2520.
35. Eun Seong Leea, H.J.S., Kun Naa, You Han Baea, Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance. Journal of Controlled Release, 2008. 129: p. 228-236.
36. Eun Seong Leea, K.T.O., Dongin Kim, Yu Seok Youn, You Han Bae, Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly (ethylene glycol)-b-poly(L-histidine). Journal of Controlled Release, 2007. 123: p. 19–26.
37. Eun Seong Lee, K.N., You Han Bae, Super pH-Sensitive Multifunctional Polymeric Micelle. NANO LETTERS, 2005. 5: p. 325-329.
38. Eun Seong Lee, K.N., You Han Bae, Polymeric micelle for tumor pH and folate-mediated targeting. Journal of Controlled Release, 2002. 91: p. 103–113.
39. Xianchun Zhu, W.L., Wentong Lu, Aisha Reed, Brandon Newton, Zhen Fan, Hongtao Yu, Paresh C. Ray, Ruomei Gao, Imidazole-modified porphyrin as a pH-responsive sensitizer for cancer photodynamic therapy. Chemical Communications, 2011. 47: p. 10311-10313.
40. Steen J. Madsen, S.-K.B., Amani R. Makkouk, Tatiana Krasieva, Henry Hirschberg, Macrophages as Cell-Based Delivery Systems for Nanoshells in Photothermal Therapy. NIH Public Access, 2012. 40: p. 507-515.
41. Nishit Doshi, A.J.S., Jonathan B. Gilbert, Maria L. Alcaraz, Robert E. Cohen, Michael F. Rubner, Samir Mitragotri, Cell-Based Drug Delivery Devices Using Phagocytosis-
Resistant Backpacks. advanced healthcare material, 2011. 23: p. H105–H109.
42. Zhiyong Poon, D.C., Xiaoyong Zhao, and Paula T Hammond, Layer-by-Layer Nanoparticles with a pH-Sheddable Layer for in Vivo Targeting of Tumor Hypoxia. ACS NANO, 2011. 5: p. 4284–4292.
43. Hyukjin Lee, C.-H.A., Tae Gwan Park, Poly[lactic-co-(glycolic acid)]-Grafted Hyaluronic Acid Copolymer Micelle Nanoparticles for Target-Specific Delivery of Doxorubicin. Macromolecular Bioscience, 2009. 9: p. 336–342.
44. Zilong Zhao, H.M., Nannan Wang, Michael J. Donovan, Ting Fu, Mingxu You, and X.Z. Zhuo Chen, and Weihong Tan, A Controlled-Release Nanocarrier with Extracellular pH Value Driven Tumor Targeting and Translocation for Drug Delivery. Angew. Chem. Int. Ed., 2013. 52: p. 7487 –7491.
45. You-Yong Yuan, C.-Q.M., Xiao-Jiao Du, Jin-Zhi Du, Feng Wang, Jun Wang, Surface Charge Switchable Nanoparticles Based on Zwitterionic Polymer for Enhanced Drug Delivery to Tumor. Advanced Materials, 2012. 24: p. 5476-5480.
46. Weiwei Gao, J.M.C., Omid C. Farokhzad, pH-Responsive Nanoparticles for Drug Delivery. MOLECULAR PHARMACEUTICS, 2010. 7: p. 1913–1920.
47. K. Avgoustakis, A.B., Z. Panagi, P. Klepetsanis, A.G. Karydas, D.S. Ithakissios, PLGA–mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. Journal of Controlled Release, 2002. 79: p. 123-135.
48. Karen Fu, D.W.P., Alexander M. Klibanov, Robert Langer, Visual Evidence of Acidic Environment Within Degrading Poly(lactic-co-glycolic acid) (PLGA) Microspheres. Pharmaceutical Research, 2000. 17: p. 100-1`06.
49. C. S. Yun, A.J., T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, G. F. Strouse, Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier. journal of the american chemical society, 2005. 127: p. 3115-3119.