研究生: |
林佑昌 Lin, Yu-Chang |
---|---|
論文名稱: |
以酵母菌為模式生物探討三七萃取物之抗氧化性質 Study of Antioxidant Properties of Panax notoginseng Extract by Using Saccharomyces cerevisiae as A Model Organism |
指導教授: |
黎耀基
Lai, Yiu-Kay |
口試委員: |
張壯榮
Chang, Chuang-Rung 李文權 Li, Wen-Quan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 35 |
中文關鍵詞: | 酵母菌 、三七 、抗氧化 |
外文關鍵詞: | Saccharomyces cerevisiae, Panax notoginseng, Anti-oxidant |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中藥三七(panax notoginseng)除了傳統上用於止血及改善心血管之功能外,在近年來被發現具有抗氧化及保護神經細胞之潛力,此次的研究中,我們使用酒精萃取的方式提取含有三七皂苷之三七乙醇提取物(PNE),並利用釀酒酵母(saccharomyces cerevisiae)作為模式生物檢視三七乙醇萃取物之抗氧化能力,在外源性的氧化刺激方面,預先加入三七乙醇萃取物能夠協助酵母菌提升其在暴露致死劑量過氧化氫及熱休克後之存活率,透過染色及流式細胞儀分析,我們發現三七乙醇能降低過氧化氫及熱休克所誘導的活性氧化物質積聚,在迫使酵母菌進行呼吸作用的條件下,三七乙醇萃取物也能夠減少酵母菌細胞因呼吸作用產生之活性氧化物質在細胞內積聚之情況,最後利用老化酵母細胞篩選的技術,我們將細胞族群中老化的酵母細胞進行分離並且分析,我們發現三七乙醇萃取物能降低老化酵母細胞活性氧化物質的積聚,透過此次的研究,我們發現在酵母菌模型中,三七乙醇提取物能提升酵母菌對於熱休克及過氧化氫所帶來氧化壓力之抗性,並降低呼吸作用以及衰老所產生的活性氧化物質在細胞內積聚的狀況。
In addition to the traditional use of hemostasis and improve cardiovascular function. Panax notoginseng in recent years have been found to have the potent of antioxidant and neuron protection. In this study, we used alcohol extraction to obtain the ethanol extract (PNE) containing Panax notoginseng Saponins (PNS) and used the Saccharomyces cerevisiae to examine the antioxidant capacity of the PNE. Pretreatment with PNE can assist the yeast cells to enhance its survival rate at exposure to lethal dose of oxidative stress. By using flow cytometry, we found that PNE can reduce the accumulation of reactive oxygen species induced by hydrogen peroxide and heat shock. PNE can also reduce the accumulation of ROS produced by respiration in the yeast cells. Finally, using the technique of sorting the aged yeast cells, aging yeast cells were isolated and analyzed. We found that PNE can reduce the accumulation of ROS in aged yeast cells. In this study, we suggested that in the yeast model, the PNE could increased the ability of yeast to resist the oxidative stress caused by heat shock and hydrogen peroxide, and reduce the accumulation of ROS cause by respiration and senescence.
1. Cross, C.E., Halliwell, B., Borish, E.T., Pryor, W.A., Ames, B.N., Saul, R.L., and J.M. McCord, and Harman, D., Oxygen radicals and human disease. Ann. Int. Med. 107: p. 526-545.
2. Schieber, M. and N.S. Chandel, ROS function in redox signaling and oxidative stress. Curr Biol, 2014. 24(10): p. R453-62.
3. Murphy, M.P., How mitochondria produce reactive oxygen species. Biochem J, 2009. 417(1): p. 1-13.
4. Ronne, H., Glucose repression in fungi. Trends Genet, 1995. 11: p. 12-17.
5. Gancedo, C. and R. Serrano, Energy-yielding metabolism, in The Yeasts: Metabolism and Physiology of Yeasts, A.H. Rose and J.S. Harrison, Editors. 1989, Academic Press: London. p. 205-59.
6. Fridovich, I., Oxygen toxicity: a radical explanation. J Exp Biol, 1998. 201(Pt 8): p. 1203-9.
7. Fang, J. and D.S. Beattie, External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide. Free Radical Biology and Medicine, 2003. 34(4): p. 478-488.
8. Turrens, J.F., Superoxide production by the mitochondrial respiratory chain. Bioscience Reports, 1997. 17: p. 3-8.
9. Raha, S. and B.H. Robinson, Mitochondria, oxygen free radicals, disease and ageing. Trends in Biochemical Sciences, 2000. 25(10): p. 502-508.
10. Veal, E.A., A.M. Day, and B.A. Morgan, Hydrogen peroxide sensing and signaling. Mol Cell, 2007. 26(1): p. 1-14.
11. Winterbourn, C.C., Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology Letters, 1995. 82(Supplement C): p. 969-974.
12. Haber, F. and J. Weiss, Über die Katalyse des Hydroperoxydes Naturwissenschaften, 1932. 20(51): p. 948–950.
13. Morano, K.A., C.M. Grant, and W.S. Moye-Rowley, The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics, 2012. 190(4): p. 1157-95.
14. Davidson, J.F. and R.H. Schiestl, Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol Cell Biol, 2001. 21(24): p. 8483-9.
15. Harman, D., The biologic clock: the mitochondria? J. Am. Geriatr. Soc, 1972. 20: p. 145147.
16. Pan, Y., Mitochondria, reactive oxygen species, and chronological aging: a message from yeast. Exp Gerontol, 2011. 46(11): p. 847-52.
17. Steinkraus, K.A., M. Kaeberlein, and B.K. Kennedy, Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol, 2008. 24: p. 29-54.
18. Fabrizio, P., Longo, V.D., The chronological life span of Saccharomyces cerevisiae. Methods Mol. Biol, 2007. 371: p. 89-95.
19. Ng, T.B., Pharmacological activity of sanchi ginseng (Panax notoginseng). J Pharm Pharmacol, 2006. 58(8): p. 1007-19.
20. Zhou, N., et al., Antioxidative effects of Panax notoginseng saponins in brain cells. Phytomedicine, 2014. 21(10): p. 1189-95.
21. Huang, Y., et al., Panaxatriol Saponins Attenuated Oxygen-Glucose Deprivation Injury in PC12 Cells via Activation of PI3K/Akt and Nrf2 Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2014. 2014: p. 1-11.
22. Zhang, C., et al., Hormetic effect of panaxatriol saponins confers neuroprotection in PC12 cells and zebrafish through PI3K/AKT/mTOR and AMPK/SIRT1/FOXO3 pathways. Sci Rep, 2017. 7: p. 41082.
23. Wan, J.B., et al., Chemical characteristics for different parts of Panax notoginseng using pressurized liquid extraction and HPLC-ELSD. J Pharm Biomed Anal, 2006. 41(5): p. 1596-601.
24. Wang, I.H., et al., Resveratrol modulates mitochondria dynamics in replicative senescent yeast cells. PLoS One, 2014. 9(8): p. e104345.
25. Macierzynska, E., A. Grzelak, and G. Bartosz, The effect of growth medium on the antioxidant defense of Saccharomyces cerevisiae. Cell Mol Biol Lett, 2007. 12(3): p. 448-56.
26. Vasylkovska, R., N. Petriv, and H. Semchyshyn, Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype. Int J Microbiol, 2015. 2015: p. 697813.