研究生: |
賴彥鈞 Lai, Yen-Chun. |
---|---|
論文名稱: |
金修飾氧化鎳核鉑殼奈米觸媒於鹼性氧還原反應的影響 The Effect of Atomic Restructuring in NiO core–Pt/Au Shell Nanocatalyst for Oxygen Reduction Reaction in Alkaline Medium |
指導教授: |
李志浩
Lee, Chih-Hao 楊耀文 Yang, Yaw-Wen |
口試委員: |
陳燦耀
Chen, Tsan-Yao 王嘉興 Wang, Chia-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 鹼性氧還原反應 、金修飾氧化鎳核鉑殼 、奈米觸媒 |
外文關鍵詞: | NiO core–Pt/Au Shell, Oxygen Reduction Reaction, Atomic Restructuring |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將燃料電池的陰極觸媒做表面與介面的結構改質,探討不同當量的金離子與不同殼厚度的氧化鎳核鉑殼奈米觸媒(NiO@Pt NCs)反應所引發的結構重組及氧還原活性與穩定性的差異。利用濕式化學還原法以反應時間與白金濃度差異控制晶體結構與大小,形成氧化鎳核與鉑殼,隨後透過添加不同當量的金離子,重組晶體結構,以調控奈米晶體的氧還原活性與化學穩定性。藉由三極式循環伏安法量測觸媒的半電池電性,發現氧化鎳鉑金觸媒(NiPt04Au006, Pt=23%,Au=3.4%)具有最高的質量活性Mass Activity (694.49 mA·mgPt-1)及較佳的比活性Specific Activity(13.89 mA·cmPt-2),甚至大於商用白金的質量活性與比活性4.73倍及16.3倍,而氧化鎳鉑金觸媒(NiPt10Au004, Pt=43%,Au=1.7 %)在經過31000圈的加速劣化測試實驗後仍可維持原觸媒在0.85 V的60%電流量。推測觸媒活性的提升,來自於金離子的還原過程-鎳與鉑原子置換至觸媒表面所導致;觸媒穩定性的提升,來自於金傾向移動置鉑金屬的缺陷位置,使低配位數的鉑金屬不易於電化學反應過程中溶解。
The wet chemical reduction method is employed for synthesizing NiO core-NiPtshell-Aucluster structured nanocrystal (NC) in top of carbon nanotubes. The sodium borohydride is reducing agent for control the crystal growth rate. The oxygen reduction reaction (ORR) activity measurement indicates that adding controlling Au concentration and distribution will enhance the NiO@NiPt activities or durability. The activities and durability can be greatly improved by thermodynamics that segregation of Au to replace the Pt atoms at vertex, edge, and (100) facets on the shell. Experimental results showed that the ORR activity of NiO@NiPt@Au NC is controlled by local strain and the electronic dipole. Furthermore, the electrocatalysts with NiO@NiPt@Au (NiPt04Au006) structure exhibit high mass activities (MA : 694.49 mA·mgPt-1) and high kinetic current density (Jk : 75 mA·cm-2) while minimizing precious metals content. The electrocatalysts with NiO@NiPt@Au (NiPt10Au004) exhibit durability for ORR with less activity loss after 31000 potential cycles between 0.5 and 1.0 V vs the reversible hydrogen electrode.
1.Larminie, James, Andrew Dicks, and Maurice S. Mcdonald, Fuel Cell Systems Explained, Wiley, New York, 2d Edn., 2003
2.Yang, Z.; Ball, S.; Condit, D.; Gummalla, M., Systematic Study on the Impact of Pt Particle Size and Operating Conditions on Pemfc Cathode Catalyst Durability. Journal of The Electrochemical Society 2011, 158, B1439.
3.<First Principles Calculations on Site-Dependent Dissolution Potentials of Supported And.Pdf>.
4.Zhang, J.; Yang, H.; Fang, J.; Zou, S., Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt(3)Ni Nanopolyhedra. Nano Lett 2010, 10, 638-44.
5.Pham Xuan, T. T.; Tuyen Le, T. T.; Duy Tran, P.; Van Pham, B.; Hien Tong, D.; Chien Dang, M., Oxidation of a Platinum Microwire Surface Applied in Glucose Detection. Advances in Natural Sciences: Nanoscience and Nanotechnology 2010, 1, 025013.
6.Shin, D.; Jeong, B.; Choun, M.; Ocon, J. D.; Lee, J., Diagnosis of the Measurement Inconsistencies of Carbon-Based Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media. RSC Adv. 2015, 5, 1571-1580.
7.Holton, O. T.; Stevenson, J. W., The Role of Platinum in Proton Exchange Membrane Fuel Cells. Platinum Metals Review 2013, 57, 259-271.
8.Gómez-Marín, A. M.; Feliu, J. M., Oxygen Reduction on Nanostructured Platinum Surfaces in Acidic Media: Promoting Effect of Surface Steps and Ideal Response of Pt(1 1 1). Catalysis Today 2015, 244, 172-176.
9.Shao, M.; Peles, A.; Shoemaker, K., Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Lett 2011, 11, 3714-9.
10.Wang, Y. J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H., Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity. Chem Rev 2015, 115, 3433-67.
11.Nie, Y.; Li, L.; Wei, Z., Recent Advancements in Pt and Pt-Free Catalysts for Oxygen Reduction Reaction. Chemical Society reviews 2015, 44, 2168-201.
12.Oezaslan, M.; Hasché, F.; Strasser, P., Pt-Based Core–Shell Catalyst Architectures for Oxygen Fuel Cell Electrodes. The journal of physical chemistry letters 2013, 4, 3273-3291.
13.N. M. MarkovicÂ, T. J. S., V. Stamenkovic and P. N. Ross, Oxygen Reduction Reaction Onpt and Pt Bimetallic Surfacesa Selective Review FUEL CELLS 2001, 105-116.
14.B. HAMMER, J. K. N., Theoretical Surface Science and Catalysis- Calculations and Concepts. ADVANCES IN CATALYSIS 2000, 45.
15.Cai, Y.; Adzic, R. R., Platinum Monolayer Electrocatalysts for the Oxygen Reduction Reaction: Improvements Induced by Surface and Subsurface Modifications of Cores. Advances in Physical Chemistry 2011, 2011, 1-16.
16.Strasser, P., et al., Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts. Nat Chem 2010, 2, 454-60.
17.Liang, Y. T.; Lin, S. P.; Liu, C. W.; Chung, S. R.; Chen, T. Y.; Wang, J. H.; Wang, K. W., The Performance and Stability of the Oxygen Reduction Reaction on Pt-M (M = Pd, Ag and Au) Nanorods: An Experimental and Computational Study. Chemical communications 2015, 51, 6605-8.
18.Vojislav R. Stamenkovic, 2* Ben Fowler,3 Bongjin Simon Mun,2 Guofeng Wang,4; Philip N. Ross, C. A. L., 3 Nenad M. Markovic,, Improved Oxygen Reduction Activity on Pt3ni(111) Via Increased Surface Site Availability. 2007; Vol. 315.
19.Chen, T.-Y.; Chang, S.-T.; Hu, C.-W.; Liao, Y.-F.; Su, Y. J.; Hsu, Y.-Y.; Wang, K.-W.; Liu, Y. T., Self-Aligned Synthesis of Nipt-Alloycore@Ptshellnanocrystal with Contrivable Heterojunction Structure and Oxygen Reduction Activity. CrystEngComm 2016.
20.J. Zhang, K. S., E. Sutter, R. R. Adzic, Stabilization of Platinum Orr Using Gold Clusters. Science 2007, 315.
21.Wang, C. v. d. V., D. More, K. L. Zaluzec, N. J. Peng, S. Sun, S. Daimon, H. Wang, G. Greeley, J. Pearson, J. Paulikas, A. P. Karapetrov, G. Strmcnik, D. Markovic, N. M. Stamenkovic, V. R., Multimetallic Au/Fept3 Nanoparticles as Highly Durable Electrocatalyst. Nano Lett 2011, 11, 919-26.
22.Medlin, M. P. H. a. J. W., Effects of Electronic Structure Modifications on the Adsorption of Oxygen Reduction. J. Phys. Chem. C 2007, 111, 17052-17060.
23.Shen, L.-L.; Zhang, G.-R.; Miao, S.; Liu, J.; Xu, B.-Q., Core–Shell Nanostructured Au@Nimpt2electrocatalysts with Enhanced Activity and Durability for Oxygen Reduction Reaction. ACS Catalysis 2016, 6, 1680-1690.
24.Sasaki, K.; Naohara, H.; Choi, Y.; Cai, Y.; Chen, W.-F.; Liu, P.; Adzic, R. R., Highly Stable Pt Monolayer on Pdau Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction. Nature Communications 2012, 3, 1115.
25.Kang, Y.; Snyder, J.; Chi, M.; Li, D.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R., Multimetallic Core/Interlayer/Shell Nanostructures as Advanced Electrocatalysts. Nano Lett 2014, 14, 6361-7.
26.Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z., Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catalysis 2015, 5, 4643-4667.
27.Sugawara, Y.; Okayasu, T.; Yadav, A. P.; Nishikata, A.; Tsuru, T., Dissolution Mechanism of Platinum in Sulfuric Acid Solution. Journal of the Electrochemical Society 2012, 159, F779-F786.
28.N.A. ANASTASIJEVIC, V. V. a. R. A., Determination of the Kinetic Parame Ters of the Oxygen. J. Electroanal. Chem. 1987, 229, 305-316.
29.YEAGER, E., Dioxygen Electrocatalysis: Mechanisms in Relation to Catalyst Structure. Journal of Molecular Catalysis 1986, 38, 5-25.
30.Http://Www.Nsrrc.Org.Tw/.
31.Chen, M.-T., Microstructure and Magnetic Properties of Nano Cobalt Thin Films after Ar Ion Beam Mombardment. National Chung Hsing Universuty, Department of Materials Science and Engineering, master's thesis 2014.
32.Chen, Y.-W., Studies of Photoluminescence Properties in Ho/Eu-Doped Cerium Oxide Nanoparticles. National Tsinghua University, Program of Science and Technology of Synchrotron Light Source, master's thesis 2013.
33.Dai, S.-W., Organic Field Effect Transistors of Crystalline Rubrene Thin Films on Magnesium Arachidate Multilayer: Fabrication and Characterization. National Tsinghua University, Department of chemistry, master's thesis 2013.
34.Lin, Y.-H., In-Situ Growth and Electrical Characterization Studies of Rubrene Thin Film Transistors. National Tsinghua University, Department of chemistry, master's thesis 2013.
35.吳哲瑋, Electronic Properties of Tio2-Nanotube Arrays Studied by X-Ray Spectroscopies.
National Taipei University of Science and Technology, Graduate Institite of Manufacturing Technology, master's thesis 2013.
36.林楹璋, Organic Functionalization on Si(111) Surface. National Chiao Tung University, Department of applied chemistry, master's thesis 2005.
37.Http://Html.Rhhz.Net/Scid/15zd1359.Htm.
38.Mintsouli, I., et al., Pt–Ni Carbon-Supported Catalysts for Methanol Oxidation Prepared by Ni Electroless Deposition and Its Galvanic Replacement by Pt. Journal of Solid State Electrochemistry 2012, 17, 435-443.