簡易檢索 / 詳目顯示

研究生: 賴彥鈞
Lai, Yen-Chun.
論文名稱: 金修飾氧化鎳核鉑殼奈米觸媒於鹼性氧還原反應的影響
The Effect of Atomic Restructuring in NiO core–Pt/Au Shell Nanocatalyst for Oxygen Reduction Reaction in Alkaline Medium
指導教授: 李志浩
Lee, Chih-Hao
楊耀文
Yang, Yaw-Wen
口試委員: 陳燦耀
Chen, Tsan-Yao
王嘉興
Wang, Chia-Hsin
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 96
中文關鍵詞: 鹼性氧還原反應金修飾氧化鎳核鉑殼奈米觸媒
外文關鍵詞: NiO core–Pt/Au Shell, Oxygen Reduction Reaction, Atomic Restructuring
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將燃料電池的陰極觸媒做表面與介面的結構改質,探討不同當量的金離子與不同殼厚度的氧化鎳核鉑殼奈米觸媒(NiO@Pt NCs)反應所引發的結構重組及氧還原活性與穩定性的差異。利用濕式化學還原法以反應時間與白金濃度差異控制晶體結構與大小,形成氧化鎳核與鉑殼,隨後透過添加不同當量的金離子,重組晶體結構,以調控奈米晶體的氧還原活性與化學穩定性。藉由三極式循環伏安法量測觸媒的半電池電性,發現氧化鎳鉑金觸媒(NiPt04Au006, Pt=23%,Au=3.4%)具有最高的質量活性Mass Activity (694.49 mA·mgPt-1)及較佳的比活性Specific Activity(13.89 mA·cmPt-2),甚至大於商用白金的質量活性與比活性4.73倍及16.3倍,而氧化鎳鉑金觸媒(NiPt10Au004, Pt=43%,Au=1.7 %)在經過31000圈的加速劣化測試實驗後仍可維持原觸媒在0.85 V的60%電流量。推測觸媒活性的提升,來自於金離子的還原過程-鎳與鉑原子置換至觸媒表面所導致;觸媒穩定性的提升,來自於金傾向移動置鉑金屬的缺陷位置,使低配位數的鉑金屬不易於電化學反應過程中溶解。


    The wet chemical reduction method is employed for synthesizing NiO core-NiPtshell-Aucluster structured nanocrystal (NC) in top of carbon nanotubes. The sodium borohydride is reducing agent for control the crystal growth rate. The oxygen reduction reaction (ORR) activity measurement indicates that adding controlling Au concentration and distribution will enhance the NiO@NiPt activities or durability. The activities and durability can be greatly improved by thermodynamics that segregation of Au to replace the Pt atoms at vertex, edge, and (100) facets on the shell. Experimental results showed that the ORR activity of NiO@NiPt@Au NC is controlled by local strain and the electronic dipole. Furthermore, the electrocatalysts with NiO@NiPt@Au (NiPt04Au006) structure exhibit high mass activities (MA : 694.49 mA·mgPt-1) and high kinetic current density (Jk : 75 mA·cm-2) while minimizing precious metals content. The electrocatalysts with NiO@NiPt@Au (NiPt10Au004) exhibit durability for ORR with less activity loss after 31000 potential cycles between 0.5 and 1.0 V vs the reversible hydrogen electrode.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 燃料電池的發展 2 1.3 燃料電池種類 3 1.4 鹼性燃料電池工作原理 5 1.5 鹼性燃料電池發展概況 9 1.6 鹼性燃料電池改良重點 9 1.6.1 減少貴金屬使用量並提升觸媒活性 10 1.6.2 觸媒穩定性改良 11 1.7 研究動機 13 第二章 文獻回顧 14 2.1鉑金屬的改善與其應用在陰極氧還原反應 14 2.2不同含量比例的鎳、鉑應用在陰極氧還原反應 22 2.3 添加金後的電化學與結構性質 24 2.4 文獻回顧總結 27 第三章 實驗方法與原理 28 3.1 實驗藥品 28 3.2實驗儀器與原理 28 3.2.1電化學分析 29 3.2.1.1循環伏安法Cyclic Voltammetry,CV 31 3.2.1.2陰極氧還原反應機制Oxygen Reduction Reaction,ORR 33 3.2.1.3加速劣化測試Accelerated durability test, ADT 37 3.2.2 同步加速器光源 38 3.2.3結構分析 40 3.2.3.1 光束線-XRD 40 3.2.3.2 光束線-XPS 43 3.2.3.3 光束線-XAS 48 3.2.3.4 穿透式電子顯微鏡分析 TEM 51 3.3 實驗設計 53 3.4 觸媒合成方法 54 第四章 結果與討論 56 4.1 實驗項目 56 4.2 不同鉑金屬殼含量對氧還原活性與穩定性的影響 56 4.2.1 鎳鉑觸媒循環伏安法與氧還原反應結果 56 4.2.2 鎳鉑觸媒加速劣化測試結果 58 4.2.3 鎳鉑觸媒高解析穿透式電子顯微鏡拍攝結果 59 4.2.4 鎳鉑觸媒X光繞射分析 (XRD) 61 4.2.5 鎳鉑觸媒X光吸收圖譜分析結果 62 4.2.6 鎳鉑觸媒XPS表面分析結果 64 4.2.7 鎳鉑觸媒實驗結果總結 66 4.3 不同含量的金對未完全覆蓋鉑殼的觸媒於電化學與結構影響 66 4.3.1 NiPt04Au觸媒系列循環伏安法與氧還原反應結果 66 4.3.2 NiPt04Au觸媒系列加速劣化測試結果 70 4.3.3 NiPt04Au觸媒系列高解析穿透式電子顯微鏡拍攝結果 71 4.3.4 NiPt04Au觸媒系列X光繞射分析 (XRD) 72 4.3.5 NiPt04Au觸媒系列X光吸收圖譜分析結果 73 4.3.6 NiPt04Au觸媒系列XPS表面分析結果 74 4.3.7 NiPt04Au觸媒系列實驗結果總結 76 4.4 不同含量的金對完全覆蓋鉑殼的觸媒於電化學與結構影響 77 4.4.1 NiPt10Au觸媒系列循環伏安法與氧還原反應結果 77 4.3.2 NiPt10Au觸媒系列加速劣化測試結果 80 4.3.3 NiPt10Au觸媒系列高解析穿透式電子顯微鏡拍攝結果 81 4.3.4 NiPt10Au觸媒系列X光繞射分析 (XRD) 83 4.3.5 NiPt10Au觸媒系列X光吸收圖譜分析結果 85 4.3.6 NiPt10Au觸媒系列XPS表面分析結果 86 4.3.7 NiPt10Au觸媒系列實驗結果總結 87 第五章 結論 89 附圖 91 參考文獻 94

    1.Larminie, James, Andrew Dicks, and Maurice S. Mcdonald, Fuel Cell Systems Explained, Wiley, New York, 2d Edn., 2003
    2.Yang, Z.; Ball, S.; Condit, D.; Gummalla, M., Systematic Study on the Impact of Pt Particle Size and Operating Conditions on Pemfc Cathode Catalyst Durability. Journal of The Electrochemical Society 2011, 158, B1439.
    3.<First Principles Calculations on Site-Dependent Dissolution Potentials of Supported And.Pdf>.
    4.Zhang, J.; Yang, H.; Fang, J.; Zou, S., Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt(3)Ni Nanopolyhedra. Nano Lett 2010, 10, 638-44.
    5.Pham Xuan, T. T.; Tuyen Le, T. T.; Duy Tran, P.; Van Pham, B.; Hien Tong, D.; Chien Dang, M., Oxidation of a Platinum Microwire Surface Applied in Glucose Detection. Advances in Natural Sciences: Nanoscience and Nanotechnology 2010, 1, 025013.
    6.Shin, D.; Jeong, B.; Choun, M.; Ocon, J. D.; Lee, J., Diagnosis of the Measurement Inconsistencies of Carbon-Based Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media. RSC Adv. 2015, 5, 1571-1580.
    7.Holton, O. T.; Stevenson, J. W., The Role of Platinum in Proton Exchange Membrane Fuel Cells. Platinum Metals Review 2013, 57, 259-271.
    8.Gómez-Marín, A. M.; Feliu, J. M., Oxygen Reduction on Nanostructured Platinum Surfaces in Acidic Media: Promoting Effect of Surface Steps and Ideal Response of Pt(1 1 1). Catalysis Today 2015, 244, 172-176.
    9.Shao, M.; Peles, A.; Shoemaker, K., Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Lett 2011, 11, 3714-9.
    10.Wang, Y. J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H., Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity. Chem Rev 2015, 115, 3433-67.
    11.Nie, Y.; Li, L.; Wei, Z., Recent Advancements in Pt and Pt-Free Catalysts for Oxygen Reduction Reaction. Chemical Society reviews 2015, 44, 2168-201.
    12.Oezaslan, M.; Hasché, F.; Strasser, P., Pt-Based Core–Shell Catalyst Architectures for Oxygen Fuel Cell Electrodes. The journal of physical chemistry letters 2013, 4, 3273-3291.
    13.N. M. MarkovicÂ, T. J. S., V. Stamenkovic and P. N. Ross, Oxygen Reduction Reaction Onpt and Pt Bimetallic Surfacesa Selective Review FUEL CELLS 2001, 105-116.
    14.B. HAMMER, J. K. N., Theoretical Surface Science and Catalysis- Calculations and Concepts. ADVANCES IN CATALYSIS 2000, 45.
    15.Cai, Y.; Adzic, R. R., Platinum Monolayer Electrocatalysts for the Oxygen Reduction Reaction: Improvements Induced by Surface and Subsurface Modifications of Cores. Advances in Physical Chemistry 2011, 2011, 1-16.
    16.Strasser, P., et al., Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts. Nat Chem 2010, 2, 454-60.
    17.Liang, Y. T.; Lin, S. P.; Liu, C. W.; Chung, S. R.; Chen, T. Y.; Wang, J. H.; Wang, K. W., The Performance and Stability of the Oxygen Reduction Reaction on Pt-M (M = Pd, Ag and Au) Nanorods: An Experimental and Computational Study. Chemical communications 2015, 51, 6605-8.
    18.Vojislav R. Stamenkovic, 2* Ben Fowler,3 Bongjin Simon Mun,2 Guofeng Wang,4; Philip N. Ross, C. A. L., 3 Nenad M. Markovic,, Improved Oxygen Reduction Activity on Pt3ni(111) Via Increased Surface Site Availability. 2007; Vol. 315.
    19.Chen, T.-Y.; Chang, S.-T.; Hu, C.-W.; Liao, Y.-F.; Su, Y. J.; Hsu, Y.-Y.; Wang, K.-W.; Liu, Y. T., Self-Aligned Synthesis of Nipt-Alloycore@Ptshellnanocrystal with Contrivable Heterojunction Structure and Oxygen Reduction Activity. CrystEngComm 2016.
    20.J. Zhang, K. S., E. Sutter, R. R. Adzic, Stabilization of Platinum Orr Using Gold Clusters. Science 2007, 315.
    21.Wang, C. v. d. V., D. More, K. L. Zaluzec, N. J. Peng, S. Sun, S. Daimon, H. Wang, G. Greeley, J. Pearson, J. Paulikas, A. P. Karapetrov, G. Strmcnik, D. Markovic, N. M. Stamenkovic, V. R., Multimetallic Au/Fept3 Nanoparticles as Highly Durable Electrocatalyst. Nano Lett 2011, 11, 919-26.
    22.Medlin, M. P. H. a. J. W., Effects of Electronic Structure Modifications on the Adsorption of Oxygen Reduction. J. Phys. Chem. C 2007, 111, 17052-17060.
    23.Shen, L.-L.; Zhang, G.-R.; Miao, S.; Liu, J.; Xu, B.-Q., Core–Shell Nanostructured Au@Nimpt2electrocatalysts with Enhanced Activity and Durability for Oxygen Reduction Reaction. ACS Catalysis 2016, 6, 1680-1690.
    24.Sasaki, K.; Naohara, H.; Choi, Y.; Cai, Y.; Chen, W.-F.; Liu, P.; Adzic, R. R., Highly Stable Pt Monolayer on Pdau Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction. Nature Communications 2012, 3, 1115.
    25.Kang, Y.; Snyder, J.; Chi, M.; Li, D.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R., Multimetallic Core/Interlayer/Shell Nanostructures as Advanced Electrocatalysts. Nano Lett 2014, 14, 6361-7.
    26.Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z., Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catalysis 2015, 5, 4643-4667.
    27.Sugawara, Y.; Okayasu, T.; Yadav, A. P.; Nishikata, A.; Tsuru, T., Dissolution Mechanism of Platinum in Sulfuric Acid Solution. Journal of the Electrochemical Society 2012, 159, F779-F786.
    28.N.A. ANASTASIJEVIC, V. V. a. R. A., Determination of the Kinetic Parame Ters of the Oxygen. J. Electroanal. Chem. 1987, 229, 305-316.
    29.YEAGER, E., Dioxygen Electrocatalysis: Mechanisms in Relation to Catalyst Structure. Journal of Molecular Catalysis 1986, 38, 5-25.
    30.Http://Www.Nsrrc.Org.Tw/.
    31.Chen, M.-T., Microstructure and Magnetic Properties of Nano Cobalt Thin Films after Ar Ion Beam Mombardment. National Chung Hsing Universuty, Department of Materials Science and Engineering, master's thesis 2014.
    32.Chen, Y.-W., Studies of Photoluminescence Properties in Ho/Eu-Doped Cerium Oxide Nanoparticles. National Tsinghua University, Program of Science and Technology of Synchrotron Light Source, master's thesis 2013.
    33.Dai, S.-W., Organic Field Effect Transistors of Crystalline Rubrene Thin Films on Magnesium Arachidate Multilayer: Fabrication and Characterization. National Tsinghua University, Department of chemistry, master's thesis 2013.
    34.Lin, Y.-H., In-Situ Growth and Electrical Characterization Studies of Rubrene Thin Film Transistors. National Tsinghua University, Department of chemistry, master's thesis 2013.
    35.吳哲瑋, Electronic Properties of Tio2-Nanotube Arrays Studied by X-Ray Spectroscopies.
    National Taipei University of Science and Technology, Graduate Institite of Manufacturing Technology, master's thesis 2013.
    36.林楹璋, Organic Functionalization on Si(111) Surface. National Chiao Tung University, Department of applied chemistry, master's thesis 2005.
    37.Http://Html.Rhhz.Net/Scid/15zd1359.Htm.
    38.Mintsouli, I., et al., Pt–Ni Carbon-Supported Catalysts for Methanol Oxidation Prepared by Ni Electroless Deposition and Its Galvanic Replacement by Pt. Journal of Solid State Electrochemistry 2012, 17, 435-443.

    QR CODE