研究生: |
林典均 Lin, Tien-Chun |
---|---|
論文名稱: |
銦鎵鋅氧化物奈米晶粒應用於非揮發性記憶體之研究 Study of InGaZnO Nanocrystals for Nonvolatile Memory applications |
指導教授: |
吳永俊
Wu, Yung-Chun |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 銦鎵鋅氧化物 、奈米晶粒 、非揮發性記憶體 |
外文關鍵詞: | InGaZnO, Nanocrystals, Nonvolatile Memory |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The novel material a-IGZO has been attracted much attention due to low temperature deposition, flexible, high transmission, and uniformity. As active layer, a-IGZO thin film has better reliability and higher mobility (>10cm2V-1s-1) than conventional hydrogenated amorphous silicon TFT (a-Si: H TFT). The uniformity of a-IGZO TFT is better than Low Temperature Polycrystalline Silicon TFT (LTPS TFT). a-IGZO thin film can fabricate at low temperature process. Therefore, the a-IGZO TFTs have the potential to replace a-Si: H TFT and LTPS TFT forming Active Matrix Organic Light Emitting Display (AMOLED). By different process conditions and post treatments, the characteristics of IGZO thin film can be change. The thesis studies that top-gate polycrystalline silicon (poly-Si) thin-film nonvolatile memory (NVM) with an indium gallium zinc oxide (IGZO) nanocrystals charge trapping layer. Experimental results indicate that good characteristics of NVM with the IGZO nanocrystals charge trapping layer. The contribution of IGZO is to achieve system on panel (SOP). This can integrate such as circuits, key devices, driving circuits and memory all on glass substrate. Nonvolatile memory (NVM) is the key component to realize the system on panel. This thesis also does the novel construction of NVM (tri-gate nano wires construction) and compares the memory’s reliability with the conventional construction. Additionally, the important issues about diffusion of silicon and oxygen from silicon dioxide (SiO2) layer into IGZO nanocrystals charge trapping layer should be seriously considered as fabricating memories with SiO2 and IGZO thin-films during high temperature process.
非晶相銦鎵鋅氧化物(Amorphous InGaZnO: a-IGZO)已被受到矚目,由於它具有可低溫沉積、高透光性、可撓曲、及均勻度佳。作為主動層(Active layer)的薄膜電晶體(Thin Film Transistors: TFTs)它的載子遷移率與可靠度比傳統氫化非晶矽薄膜電晶體(a-Si:H TFT)高、以及均勻性優於低溫複晶矽薄膜電晶體(Low Temperature Polycrystalline Silicon TFT: LTPS TFT)並可以低溫下製作,因此a-IGZO薄膜電晶體具有取代氫化非晶矽薄膜電晶體與低溫複晶矽薄膜電晶體來製作主動矩陣有機發光顯示器(Active Matrix Organic Light Emitting Display: AMOLED)的潛力。藉由不同的製作條件及後續處理方式,可以改變IGZO薄膜的特性,此論文討論將IGZO奈米晶粒作為電荷儲存層製作在非揮發性記憶體(Nonvolatile Memory: NVM)上的良好特性,IGZO薄膜將幫助系統面板(System on Panel: SOP)的實現;即是將所有的周邊電路,關鍵元件,記憶體元件,驅動電路等,全部整合於玻璃基板上,非揮發性記憶體元件是實現系統面板的關鍵。此論文也製作新穎的三向閘極奈米線非揮發性記憶體元件,並將之與傳統製作元件特性做比較。此外本文意外發現二氧化矽層與銦鎵鋅氧化物奈米晶粒層的接面在高溫製程下會擴散,此現象將對記憶體元件特性造成影響,在元件製作上需要多加以考量。
Chapter 1
[1.1] M. Ito, M. Kon, C. Miyazaki, et al. “Amorphous oxide TFT and their applications in electrophoretic displays,” Phys. Stat. Sol. (a), 205, No. 8, pp. 1885–1894, 2008.
[1.2] H. N. Lee, J. Kyung. M. C. Sung, et al., “Oxide TFT with multilayer gate insulator for backplane of AMOLED device,” Journal of the SID, 16/2, 2008.
[1.3] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” Journal of Non-Crystalline Solids, 352, pp. 851-858, 2006.
[1.4] P. Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato, “Anomalous off-current mechanisms in n-channel poly-Si thin film transistors.” Solid State Electronics, vol. 38, pp. 2075-2079, Aug. 1995.
[1.5] M. Hack, I-W. Wu, T. H. King and A. G. Lewis, “Analysis of Leakage Currents in Poly-silicon Thin Film Transistors,” IEEE Int. Electron Devices Meeting Tech. Dig., pp. 385-387, 1993.
[1.6] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. vol. 53, pp.1193-1202, 1982.
[1.7] N. Yamauchi, J. J. Hajjar and R. Reif, “Drastically improved performance in poly-Si TFTs with channel dimensions comparable to grain size,” IEEE Int. Electron Devices Meeting Tech. Dig., pp. 353 - 356, 1989.
[1.8] R. E. Presley, C. L. Munsee, C. –H. Park, D. Hong, J. F. Wager, and D. A. Keszler, “Tin oxide transparent thin-film transistors,” J. Phys. D., 37, 2810, 2004.
[1.9] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Applied Physics Letters, vol. 82, pp. 1117-1119, 2003.
[1.10] K. Nomura, H. Ohta, A. Takagi, et al., “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductor,” Nature, vol. 432, pp. 488-492, 2004.
[1.11] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors,” Japanese Journal of Applied Physics, vol. 45, pp. 4303-4308, 2006.
[1.12] H. Q. Chiang, B. R. McFarlance, et al., “Processing effects on the stability of amorphous indium gallium zinc oxide thin-film transistors,” Journal of Non-Crystalline Solids, 2008.
[1.13] K. W. Lee, K. Y. Heo, and H. J. Kim, “ Photosensitivity of solution-based indium gallium zinc oxide single-walledcarbon nanotubes blend thin film transistors,” Applied Physics Letters, vol. 94, 102112, 2009.
[1.14] Huaxiang Yin, Sunil Kim, “fully transparent nonvolatile memory employing amorphous oxides as charge trap and transistor’s channel layer,” Applied Physics Letters, vol. 93, 172109, 2008.
[1.15] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J., Vol. 46, pp. 1288 , 1967.
[1.16] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, vol. 1, pp. 72, 2002.
[1.17] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, pp.52, 1996.
[1.18] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS”, IEEE circuits & devices, vol. 16, pp. 22, 2000.
[1.19] J. S. Witters, G. Groeseneken and H. E. Maes, “Analysis and modeling of on-chip high-voltage generator circuits for use in EEPROM circuits”, IEEE Jounal of Solid State Circuits, pp. 1372, 1989.
[1.20] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., pp. 521, 1995.
[1.21] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Lett., Vol. 18, pp. 278, 1997.
[1.22] Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEEE Int. Electron Devices Meeting Tech. Dig., pp. 115, 1998.
Chapter 2
[2.1] T. Minami, Semicond. Sci. Technol. 20, S35 (2005).
[2.2] H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, J. Non-Cryst. Solids 198–200, 165 (1996).
[2.3] H. Hosono, M. Yasukawa, and H. Kawazoe, J. Non-Cryst. Solids 203, 334 (1996).
[2.4] Manabu Ito*, Masato Kon, Chihiro Miyazaki, Noriaki Ikeda, Mamoru Ishizaki, Ryohei Matsubara, Yoshiko Ugajin, and Norimasa Sekine “Amorphous oxide TFT and their applications in electrophoretic displays” p hys. stat. sol. (a) 205, No. 8, 1885–1894 (2008) / DOI 10.1002/pssa.200778910
[2.5] H. Yabuta, M. Sano, K. Abe, T. Aiba, et al., “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering”, Applied Physics Letters, vol. 89, 112123, 2006.
[2.6] J. H. Na, M. Kitamura, and Y. Arakawa, “High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes”, Applied Physics Letters, vol. 93, pp. 063501, 2008.
[2.7] J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment”, Applied Physics Letters, vol. 90, pp. 262106, 2007.
[2.8] T. Y. Chan, K. K. Young, C. Hu, “A True Single Transistor Oxide-Nitride-Oxide EEPROM”, IEEE Electron Device Letters, EDL-8, No- 3, pp. 93-95, 1987.
[2.9] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview”, Proceedings of The IEEE, vol. 85, pp. 1248, 1997.
[2.10] M. Woods, “Nonvolatile Semiconductor Memories:Technologies, Design, and Application”, C. Hu, Ed. New York:IEEE Press, ch. 3, p.59, 1991.
[2.11] M. Lezlinger and E. H. Snow, J. Appl. Phys., 40, 278 (1969)
[2.12]. P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot-electron emission in n-channel IGFETs,” IEEE J. Solid-State Circuits, Vol. 14, pp. 442, 1979.
[2.13]. I. C. Chen, C. Kaya and J. Paterson, “Band-to-band tunneling induced substrate
hot-electron (BBISHE) injection: A new programming mechanism for nonvolatile memory devices,” IEDM, pp.263, 1989.
[2.14]. Souvik Mahapatra, S. Shukuri and Jeff Bude, “CHISEL Flash EEPROM-Part
I: Performance and Scaling”, IEEE TRANSACTION on Electron Devices,
VOL.49, NO.7, pp.1296~pp.1301, July 2002
[2.15]. David Esseni, Luca Selmi, Andrea Ghetti and Enrico Sangiorgi, “The Scaling
Properties of CHISEL and CHE Injection Efficiency in MOSFETs and Flash
Memory Cells”, IEEE IEDM pp.275~pp.278, 1999
[2.16]. Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Viscontio, “Introduction to Flash memory,” Proceedings of the IEEE, vol. 91, pp.489,2003.
[2.17]. P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, “Failure mechanisms of Flash
cell in program/erase cycling,” IEDM Tech. Dig., pp. 291–294, 1994.
[2.18]. Roberto Bez, Emilic Camerlenghi, Alberto Modelli, and Angelo Visconti,
“Introduction to Flash Memory,” Proc. IEEE, Vol. 91, pp. 489-502, 2003.
[2.19]. Van Houdt J.F., Wellekens D., Ravazzi L., and Sangiorigi E., “Soft-programming in scaled flash memory cells,” H.C. de Graaf and H.V. Kranemburg (Eds.), Proc. ESSDERC 95, The Hague (The Netherlands), pp. 549.
Chapter 3
[3.1] Lun-Jyun Chen, Yung-Chun Wu, Ji-Hong Chiang, Min-Feng Hung, Chin-Wei Chang, and Po-Wen Su, ”Polycrystalline Silicon Thin-Film Flash Memory with Pi-Gate Structure and HfO2 Charge Trapping Layer,” Jpn. J. Appl. Phys., vol. 48, pp. 120215, Dec. 2009.
[3.2] H. Yin, S. Kim, Y. Lim, Y. Min, C. J. Kim, I. Song, J. Park, S. W. Kim, A. Tikhonovsky, J. Hyun, and Y. Park, “Program/Erase Characteristics of Amorphous Gallium Indium Zinc Oxide Nonvolatile Memory,” IEEE Trans. Electron Devices, vol. 55, no. 8, pp. 2071–2077, Aug. 2008.
[3.3] A. Suresh, S. Novak, P. Wellenius, V. Misra, and J. F. Muth, “Transparent indium gallium zinc oxide transistor based floating gate memory with platinum nanoparticles in the gate dielectric,” Appl. Phys. Lett., vol. 94, pp.123501-123503, 2009.
[3.4] K. Homura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature (London), vol. 432, pp. 488 , Nov. 2004
[3.5] Y. C. Wu, P. W. Su, C. W. Chang, and M. F. Hung, “Novel twin poly-Si thin film transistors EEPROM with tri-gate nanowires structure,” IEEE Electron Device Lett., vol. 29, no. 11, pp. 1226–1228, Nov. 2008.
[3.6] T. C. Chang, P. T. Liu, S.T. Yan, and S. M. Sze, ‘Electron Discharging Effects of Tungsten Nanocrystals Embedded in Silicon Dioxidefor Low-Voltage Nonvolatile Memory Technology,” Electrochemical and Solid-State Letters, 8 (3) G71-G73, 2005