研究生: |
楊東偉 Dong-Wei Yang |
---|---|
論文名稱: |
氮化鉬電極及堆疊式介電層應用在SONOS-type快閃記憶體之研究 Investigation of MoN Metal-gate and Stacked Dielectric Layer Applied on SONOS-type Flash Memory Device |
指導教授: |
張廖貴術
Kuei-Shu Chang-Liao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 氮化鉬 、堆疊式 、快閃記憶體 、高功函數 、高介電 |
外文關鍵詞: | MoN, stacked, flash memory, high work function, high k |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
SONOS-type快閃記憶體具有快速寫入、低操作電壓、高可靠度、高整合性,但是,在高電壓抹除下會有EBT效應產生,使得元件的抹除速度受到限制。本論文研究即針對利用MoN當金屬電極應用在快閃記憶元件上,觀察其寫入、抹除、電荷保持、耐力以及元件干擾之電特性。根據其實驗的結果可發現利用MoN當金屬電極實現在電容結構和電晶體結構,明顯提升利用TaN電極的抹除速度及可靠度。
對於SONOS-type的快閃記憶體發展而言,由於元件的微縮、快速、省電、高密集度等趨勢走向,所以將針對傳統SONOS做改善,因此,就衍生出利用高介電材料取代當初的氮化矽來當作電荷捕捉層,除此之外,除了利用高介電材料當電荷儲存層,也將針對SONOS形式的快閃記憶體的電荷捕捉層、穿隧氧化層,其針對各項改變來探討是否可以將其元件效率做改善。其中利用多層的高介電材料堆疊出的電荷捕捉層對於元件來說有所改善;利用不同的高介電材料搭配氧化矽所堆疊出的穿隧氧化層元件結構對於電性有所改善。針對這兩部分實驗結果可發現,利用Al2O3/HfO2/Al2O3堆疊電荷捕捉層在整體電性表現上可得到較佳的結果;另外利用薄氧化層上堆疊Al2O3當作穿隧層,可獲得在操做速度以及資料保持力都有不錯效率的結果。
[1] Kahng, D. and Sze, S. M. “A floating gate and its application to memory devices.” Bell Systems Technical Journal. l46, 1283,1967
[2] Wegener, H. A. R, Lincoln, A. J., Pao, H. C., O'Connell, M. R., and Oleksiak, R. E. “The variable threshold transistor, a new electrically alterable, non-destructive read-only storage device.”, IEEE IEDM Technical Digest. 1. 1967
[3] Bez, R.; Cappelletti, P.; “Flash Memory and Beyond”, VLSI Technology, 2005. (VLSI-TSA-Tech). 2005 IEEE VLSI-TSA International Symposium on 25-27 .Page(s):84 - 87 , April 2005
[4] Marvin H. White, et al., ”On the go with SONOS”, IEEE CIRCUIT & DEVICE, JULY 2000.
[5] Dipert, B.; Hebert, L.; “Flash Memory go Mainstream”, Spectrum, IEEE Volume 30, Issue 10, Oct. 1993 Page(s):48 - 52
[6] Trexler, T.; “Flash Memory Complexity”, Instrumentation & Measurement Magazine, IEEE Volume 8, Issue 1, Page(s):22 - 26 , March 2005
[7] 薛富元, “由模擬來探討Floating Gate Memory及SONOS元件微小化之極限”, 國立清華大學電子工程研究所, P6,200410
[8] Min She, “Semiconductor Flash Memory Scaling”, 2003
[9] Yan-Ny Tan, et al., ”High-k HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation”, IEEE Electron Device Meeting, p889-892, 2004.
[10] Yan-Ny Tan, et al., ”Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage Layer”, IEEE Transactions on Electron Device ,Vol.51, No.7,JULY, 2004.
[11] Moon Sig Joo, et al., ”Dependence of Chemical Composition Ratio on Electrical Properties of HfO2-Al2O3 Gate Dielectric”, Jpn. J. Appl. Phys., No.3A, P.l220-l222, MARCH 2003.
[12] W. J. Zhu, et al., ”Effect of Al Inclusion in HfO2 on the Physical and electrical properties of the dielectrics”, IEEE Electron Electron Device Letters, Vol.23, No.11, NOVEMBER 2003.
[13] J. Petry, et al., ”The band structure of ALCVD AlZr and AlHf oxides as measured by XPS”, Materials Science and Engineering, 2004.
[14] Yan Ny Tan; Chim, W.K.; Wee Kiong Choi; Moon Sig Joo; Byung Jin Cho; “Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS-type nonvolatile memory for high-speed operation”, Electron Devices, IEEE Transactions on Volume 53, Issue 4, Page(s):654 - 662 ,April 2006
[15] Min She, et al., ”Silicon-nitride as a tunnel dielectric for improved SONOS-type flash memory”, IEEE Electron Device Letters, Vol.24, No.5, MAY, 2003.
[16] Hang-Ting Lue, et al., ”BE-SONOS A bandgap engineered SONOS with excellent performance and reliability”, IEEE International Electron Devices Meeting, 2005.
[17] B. Govoreanu, et al., “VARIOT:A Novel Multilayer Tunnel Barrier Concept for Low-Voltage Nonvolatile Memory Devices”, IEEE Electron Devices Letter, Vol.24, No.2, p99-101, FEBRUARY 2003.
[18] 王炳琨,”不同HfOxNy/SiO2堆疊穿隧介電層對快閃記憶體操作特性之影響”,國立清華大學工程與系統科學研究所,p60-p94, 2004.
[19] Sanghun Jeon, et al., ”High Work-Function metal gate and high-K dielectric for charge trap flash memory device applications”, IEEE Transactions on Electron Device, Vol.52, No.12, DECEMBER 2005.
[20] Jiankang Bu, et al., “Retention reliability enhanced SONOS NVSM with scaled programming voltage”, IEEE Aerospace Conference paper, Vol.5, P5-2383 5-2390, 2001
[21] Marvin H. White, et al., “A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol.20, No.2, JUNE 1997.
[22] W. J. Tsai, et al., “Data retention behavior of a SONOS type two-bit storage flash memory cell”, IEEE International Electron Devices Meeting, 2001
[23] K. Tamer San, et al., “Effects of erase source bias on Flash EPROM device reliability”, IEEE Transactions on Electron Devices , Vol.42, No.1, JANUARY 1995
[24] Verma, et al., ”Reliability Performance of ETOX Based Flash Memory”, International Reliability Physics Symp, P.158, 1998.
[25] Haddad, et al., ”Degradation Due to Hole Trapping in Flash Memory Cells”, IEEE Electron Dev. Lett., Vol.10, No3, P.117, Mar. 1989.
[26] Adam Brand, et al., ”Novel Read Distub Failure Mechanism Induced by Flash Cycling”, International Reliability Physics Symp., P.127, 1993.
[27] 張俊彥,鄭晃忠,”積體電路製程及設備技術手冊”,中華民國電子材料與元件協會,p188,1997
[28] Tsu-Jae King, et al., “NOVEL MATERIALS AND PROCESSES FOR MOS DEVICES”, MICRO Project 98-071,1998-99
[29] H. Matsuhashi and S. Nishikawa, “Optimum Electrode Materials for Ta2O5 Capacitors for High- and Low-Temperature Processes”, Jpn. J. Appl. Phys. Vol.33. pp. 1293-1297. 1994
[30] Chang Hyun Lee, et al., ”A novel SONOS structure of SiO2-SiN-Al2O3 with TaN metal gate for multi-giga bit flash memories”, IEEE International Electron Devices Meeting, 2003.
[31] Kuo-Hong Wu; Hua-Ching Chien; Chih-Chiang Chan; Tung-Sheng Chen; Chin-Hsing Kao, “SONOS device with tapered bandgap nitride layer” Electron Devices, IEEE Transactions on Volume 52, Issue 5, Page(s):987 – 992, May 2005
[32] Jong Jin Lee, Xuguang Wang ,Weiping Bai ,Nan Lu ,and Dim-Lee Kwory, ”Theoretical and Experimental Investigation of Si Nanocrystal Memory Device With HfO2 ,High-k Tunneling Dielectric”, IEEE Transactions on Electron Devices ,Vol. 50,NO 10, p.2067-2072, 2003.
[33] B. Govoreanu, P. Blomme, J. Van Houdt and K. De Meyer, “Simulation of Nanofloating Gate Memory with High-k Stacked Dielectrics”, IEEE Electron Devices Letter, p299-302,2003.
[34] 簡伯彥,”鉬金屬閘極金氧半元件之電性研究”,國立清華大學工程與系統科學研究所,p65, 2007.