簡易檢索 / 詳目顯示

研究生: 張立穎
Li-Ying Chang
論文名稱: 針對數位控制脈寬調變轉換器於運算時間延遲之相位領前補償方法
Phase Advance Compensation for Computational Time Delay of a Digital Controlled PWM Converter
指導教授: 鄭博泰
Po-Tai Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 86
中文關鍵詞: 轉換器主動濾波能量回生時間延遲數位信號處理器
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於數位信號處理器對於實現複雜控制法及程式撰寫的便利性,許多電力電子之應用皆偏好使用數位信號處理器來實現控制法。然而數位信號處理器所伴隨的時間延遲卻使得控制法在實現上有未盡理想之處。以並聯式主動濾波器為例,其濾波效果之優劣主要取決於電流控制的能力,若以數位信號處理器來實現其電流控制法,則所造成的時間延遲勢必降低電流的追隨性能,進而影響整體濾波的效果。因此,關於數位信號處理器時間延遲之研究遂成為一重要課題。
    目前在各式電流控制法中,以預測電流調節器最常應用於並聯式主動濾波器,其對諧波電流的追隨性能及定頻操作為其最大優點。因此本文特針對數位控制器的時間延遲對預測電流調節器所產生的影響加以研究及提出補償方法,並以電腦模擬及實驗測試結果來驗證本文所提之控制


    Recently, many power electronics applications use digital signal processors for control implementation because of their advantages in handling complex mathematics operations and easy programming. However, the inherent time delay of the digital signal processor deteriorates its control performance. For example, the filtering capability of the shunt active filter highly depends on the current control capability. The time delay of the digital signal processor reduces the current tracking capability and harmonic compensation performance. Thus, the research on the time delay of the digital controller becomes an issue.
    The predictive current regulator is often used for shunt active filters because it has the advantages of high current tracking capability and fixed switching frequency operation. This thesis studies the effect of the time-delay caused by digital controllers on the predictive current regulator, and proposes a compensation method. Computer simulation and laboratory test results are presented to validate the functionalities of the proposed method.

    目錄 誌謝……..…..…..………………………………………………………..…. III 中文摘要..…..…..………………………………………………………..… III 英文摘要........………..……..……………………………………………… III 目錄..…………..…………………………………………………………… IV 圖目錄……..………….…………….……………………………………… VI 表目錄……..……………………………………………………………......IIX 第一章 .緒論……..………………..……………………….…...….……..0 1 第一章1.1 簡介….…………………………………………………..…..001 第一章1.2 論文大綱……………………………………….……………003 第二章 .文獻回顧…………………….…………………….……………004 第二章2.1 簡介….…………………………………………………..…..004 第二章2.2 數位控制器之時間延遲原因….……………………………024 第二章2.82.2.1 一階低通濾波器近似法……………………………….025 第二章2.62.2.2 零階保持器近似法…………………………………….026 第二章2.62.2.3 空間向量推導法……………………………………….027 第二章2.62.2.4 結論….……………………………………………..…..010 第二章2.3 時間延遲補償………………….……………………………011 第二章2.4 DAXC系統…………….……………………………………012 第二章2.5 總結………………………………………………………….013 第三章 .操作原理………….…………………………………………….014 第二章3.1 簡介………………….………………………………………014 第二章3.2 DAXC系統控制原理………….……………………………016 第二章3.33.2.1 主動濾波控制原理…………………………………….016 第二章2.63.2.2 直流鏈電壓控制原理………………………………….017 第二章2.63.2.3 預測電流調節器….……………………………………017 第二章3.3 時間延遲分析………………….……………………………020 第二章3.4 時間延遲補償………………….……………………………022 第二章3.5 總結………………………………………………………….025 第四章 .模擬結果與分析………….…………………………………….026 第二章4.1 簡介……………………….…………………………………026 第二章4.2 DAXC系統操作於取樣頻率fs=10kHz之模擬結果……….029 第二章4.3 DAXC系統操作於取樣頻率fs=20kHz之模擬結果……….038 第二章4.4 總結………………………………………………………….046 第五章 .實驗結果與分析………………………………………………..050 第二章5.1 簡介………………………………………………………….050 第二章5.2 DAXC系統操作於取樣頻率fs=10kHz之模擬結果……….053 第二章5.3 DAXC系統操作於取樣頻率fs=20kHz之模擬結果……….062 第二章5.4 總結……………………………………………………….....070 第六章 .結論…………………………………………………………......074 參考文獻………..……..…………………………………………………… 76 附錄………..……..………………………………………………………… 79 圖目錄 圖1-1 DAXC系統電路架構圖………………………………………….002 圖2-1 電流控制方塊圖…….……………………...…………………….005 圖2-2 取樣時間Ts、三角波週期Tcarr、PWM延遲TPWM及等效時間延0.4遲Tei與三角波之關係圖。(a)取樣兩次(b)取樣一次……....…….006 圖2-3 使用零階保持器重建之信號及其平滑近似曲線…...…..………006 圖2-4 數位信號處理時序圖………….………………………………....008 圖2-5 電流控制方塊圖……….…………………...…………………….009 圖2-6 同步參考座標與參考電壓向量關係圖………..………………...009 圖2-7 DAXC系統電路架構圖………………………………………….013 圖3-1 DAXC系統電路架構圖………………………………………….014 圖3-2 DAXC系統之控制方塊圖……………………………………….015 圖3-3 數位電流調節器示意圖………………………………………….019 圖3-4 實際信號輸出延遲之示意圖…………………………………….021 圖3-5 經時間延遲補償後之DAXC系統控制方塊圖………………….023 圖4-1 DAXC系統模擬架構圖………………………………………….028 圖4-2 轉換器啟動前之市電電流is波形與頻譜圖……………………030 圖4-3 轉換器輸出電流i*與i波形與頻譜圖(fs=10kHz,相位補償前)....031 圖4-4 轉換器啟動後之市電電流is波形與頻譜圖(fs=10kHz,相位補償前)前)…………………………………………………………………032 圖4-5 轉換器輸出電流i*與i波形與頻譜圖(fs=10kHz,相位補償後)…033 圖4-6 轉換器啟動後之市電電流is波形與頻譜圖(fs=10kHz,相位補償前)後)…………………………………………………………………034 圖4-7 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=10kHz,相位補償前)……………………….036 圖4-8 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=10kHz,相位補償後)……………………….037 圖4-9 轉換器輸出電流i*與i波形與頻譜圖(fs=20kHz,相位補償前)....039 圖4-10 轉換器啟動後之市電電流is波形與頻譜圖(fs=20kHz,相位補償前)前)……………………………………………………………….040 圖4-11 轉換器輸出電流i*與i波形與頻譜圖(fs=20kHz,相位補償後)...041 圖4-12 轉換器啟動後之市電電流is波形與頻譜圖(fs=20kHz,相位補償前)後)…………………………………………………………………042 圖4-13 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=20kHz,相位補償前)……………………….044 圖4-14 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=20kHz,相位補償後)……………………….045 圖5-1 實驗室之系統架構圖…………………………………………….052 圖5-2 轉換器啟動前之市電電流is波形與頻譜圖……………………054 圖5-3 轉換器輸出電流i*與i波形與頻譜圖(fs=10kHz,相位補償前)…055 圖5-4 轉換器啟動後之市電電流is波形與頻譜圖(fs=10kHz,相位補償前)前)…………………………………………………………………056 圖5-5 轉換器輸出電流i*與i波形與頻譜圖(fs=10kHz,相位補償後)....057 圖5-6 轉換器啟動後之市電電流is波形與頻譜圖(fs=10kHz,相位補償前)後)…………………………………………………………………058 圖5-7 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=10kHz,相位補償前)……………………….060 圖5-8 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=10kHz,相位補償後)……………………….061 圖5-9 轉換器輸出電流i*與i波形與頻譜圖(fs=20kHz,相位補償前)....063 圖5-10 轉換器啟動後之市電電流is波形與頻譜圖(fs=20kHz,相位補償前)前)…………………………………………………………………...064 圖5-11 轉換器輸出電流i*與i波形與頻譜圖(fs=20kHz,相位補償後)...065 圖5-12 轉換器啟動後之市電電流is波形與頻譜圖(fs=20kHz,相位補償前)後)…………………………………………………………………066 圖5-13 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=20kHz,相位補償前)……………………….068 圖5-14 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=20kHz,相位補償後)……………………….069 圖A-1 市電電壓偵測電路……………………………………………….079 圖A-2 霍爾元件Nana C. T.腳位圖…………………………………..….080 圖A-3 直流鏈電壓偵測電路…………………………………………….081 圖A-4 DSP PWM信號控制電路……………………………………..….082 圖A-5 IGBT閘級驅動電路…………………………………………….083 圖A-6 實驗室測試平台………………………………………………….084 圖A-7 IGBT轉換器…………………………………………..………….084 圖A-8 直流迴路電感Lf1、Lf2與二極體D1、D2……………..…………….084 圖A-9 升壓變壓器、自耦變壓器……………………………………….084 圖A-10 TMS320C6711數位信號處理器……………………………….085 圖A-11 IGBT 閘極驅動電路…………………………………………….085 圖A-12 DSP PWM信號控制電路……………………………………….085 圖A-13 回授信號偵測電路……………………………………………….085 圖A-14 轉換器輸出端LC濾波器……………………………………….086 圖A-15 Ls、Ll、Cdc2及Rl………………………………………………....….086 圖A-16 Lr及Rr……………………………………………………….…….086 圖A-17 電源端Δ-Y變壓器…………………………………………….086 表目錄 表2-1 三種分析法對PWM輸出延遲與增益之比較…………………...010 表4-1 相位補償前後,市電電流is各主要成分之比較(fs=10kHz)….….047 表4-2 相位補償前後,i*與i之誤差比較(fs=10kHz)….………………....047 表4-3 相位補償前後,市電電流is各主要成分之比較(fs=20kHz)….….048 表4-4 相位補償前後,i*與i之誤差比較(fs=20kHz)….………………....048 表4-5 能量回升時,相位補償前後E與i之相位差比較….…………...049 表5-1 相位補償前後,市電電流is各主要成分之比較(fs=10kHz)…..…071 表5-2 相位補償前後,i*與i之誤差比較(fs=10kHz)….………………....071 表5-3 相位補償前後,市電電流is各主要成分之比較(fs=20kHz)…..…072 表5-4 相位補償前後,i*與i之誤差比較(fs=20kHz)….………………....072 表5-5 能量回升時,相位補償前後E與i之相位差比較….…………...073

    [1] M. El-Habrouk, M.K. Darwish, and P. Mehta, “Active Power Filters: A Review,” IEE Proceedings-Electric power applications, vo1. 147, pp.
    403-413, 2000.
    [2] H. Akagi, “New Trends in Active Filters for Power Conditioning,” IEEE
    Transactions on Industry Applications, vo1. 32, pp. 1312-1322, 1996.
    [3] .S. Bhattacharya and D. Divan, “Active Filter Solutions for Utility
    Interface of Industrial Loads,” Proceedings of the 1996 International
    Conference on Power Electronics, Drives and Energy Systems for
    Industrial Growth, 1996, vo1. 2, pp. 1078-1084, 1996.
    [4] B. Singh, K. Al-Haddad, and A. Chandra, “A Review of Active Filters
    for Power Quality Improvement,” IEEE Transactions on Industrial
    Electronics, vo1. 46, pp. 960-971, 1999.
    [5] J. Zeng, O. Diao, Y. Ni, S. Cheng, and B. Zhang, “A Novel Current
    Controller for Active Power Filter Based On Optimal Voltage Space
    Vector,” IEEE Conference on Power Electronics and Motion Control,
    vo1. 2, pp. 686-691, 2000.
    [6] .D. M. Brod and D. W. Novonty, “Current Control of VSI-PWM
    Inverters,” IEEE Transactions on Industry Applications, vo1. IA-21, pp.
    562-570, 1985.
    [7]T.T. G. Habetler, “A Space Vector-based Rectifier Regulator for AC/DC/AC
    Converters,” IEEE Transactions on Power Electronics, vo1. 8, pp. 30-36,
    1993.
    [8] P. Jintakosonwit, H. Fujita, and H. Akagi, “Control and Performance of a
    Fully-Digital-Controlled Shunt Active Filter for Installation on a Power
    Distribution System,” IEEE Transactions on Power Electronics, vo1. 17,
    pp. 132-140, 2002.
    [9] S. Hamasaki and A. Kawamura, “Improvement of Current Regulation of
    Line-Current-Detection-Type Active Filter based on Deadbeat Control,”
    IEEE Transactions on Industry Applications, vo1. 39, pp. 536-541, 2003.
    [10] O. Kukrer, “Discrete-Time Current Control of Voltage-Fed Three-Phase
    PWM Inverters,” IEEE Transactions on Power Electronics, vo1. 11, pp.
    260-269, 1996.
    [11] W. C. Lee, D. S. Hyun, and T. K. Lee, “A Novel Control Method for
    Three-Phase PWM Rectifiers Using a Single Current Sensor,” IEEE
    Transactions on Power Electronics, vo1. 15, pp. 861-870, 2000.
    [12] S. G. Jeong and M. H. Woo, “DSP-Based Active Power Filter with
    Predictive Current Control,” IEEE Transactions on Industrial
    Electronics, vo1. 44, pp. 329-336, 1997.
    [13] H. T. Moon, H. S. Kim, and M. J. Youn, “A Discrete-Time Predictive
    Current Control for PMSM,” IEEE Transactions on Power Electronics,
    vo1. 18, pp. 464-472, 2003.
    [14] H. R. Hur, J. M. Lee, S. Lee, and M. H. Lee, “Compensation of Time
    Delay Using a Predictive Controller,” Proceedings of the IEEE
    International Symposium on Industrial Electronics, 1999, vo1. 3, pp.
    1087-1092, 1999.
    [15] V. Blasko and V. Kaura, “A Novel Control to Actively Damp Resonance
    in Input LC Filter of a Three-Phase Voltage Source Converter,” IEEE
    Transactions on Industry Applications, vo1. 33, pp. 542-550, 1997.
    [16] D. Raviv and E. W. Djaja, “ Technique for Enhancing the Performance of
    Discretized Controllers,” IEEE Control Systems Magazine, vol. 19, pp.
    52-57, 1999.
    [17] P. Katz, Digital Control Using Microprocessors, Technion-Israel Institute
    of Technology, 1986.
    [18] S. Bibian and H. Jin, “Time Delay Compensation of Digital Control for
    DC Switchmode Power Supplies Using Prediction Techniques,” IEEE
    Transactions on Power Electronics, vol. 15, pp. 835-842, 2000.
    [19] B. H. Bae and S. K. Sul, “A Compensation Method for Time Delay of
    Full-Digital Synchronous Frame Current Regulator of PWM AC
    Drives,” IEEE Transactions on Industry Applications, vol. 39, pp.
    802-810, 2003.
    [20] Jian-Shen Li, Design and Implementation of an Auxiliary IGBT
    Converter for Conventional Diode Rectifier Front-ends, Master Thesis,
    Department of Electrical Engineering, National Tsing Hua University,
    ROC, 2003.
    [21] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics:
    Converters, Applications and Design, New York: John Wiley & Sons,
    1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE