簡易檢索 / 詳目顯示

研究生: 周景軒
Chou, Ching-Hsuan
論文名稱: 大型智慧反射表面輔助無線網路之上傳速率最佳化
Uplink Rate Optimization in Large Intelligent Surface-aided Wireless Networks
指導教授: 陳文村
Chen, Wen-Tsuen
許健平
Sheu, Jang-Ping
口試委員: 楊得年
Yang, De-Nian
王志宇
Wang, Chih-Yu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 43
中文關鍵詞: 大型智慧反射表面多使用者SIMO無線網路
外文關鍵詞: Large intelligent surface (LIS), multi-user single-input multi-output (MU-SIMO) wireless network
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在自然的電磁傳播環境中,會有很多不利的傳播狀況,例如:造成訊號衰減的多路徑傳播,以及由環境中大型物體造成的折射與反射。因此,環境經常會對通訊效率以及服務品質造成負面的影響。
    大型智慧反射表面(Large intelligent surface, LIS)是一種由被動無線元件組成的人工結構,其中每個元件都可以藉由可控制的相位變化量來改變訊號的相位,藉此反射訊號,而這可以使訊號避免因環境中的障礙物造成的失真。因此,大型智慧反射表面被看作是一種大有可為的技術,可以用來為未來的通訊系統建立一個可用程式設計的無線環境,藉此提升服務品質。
    在本篇論文中,我們聚焦在由LIS輔助的多基地台上傳系統的最佳化設定。我們
    制定了一個加權總傳送速率(weighted sum rate, WSR)的最大化問題,其中,我們將會設計(1) LIS的相位、(2)使用者訊號的強度以及(3) 使用者與基地台的組合。這個問題首先被分解成(1) LIS相位最佳化、(2)使用者訊號最佳化以及(3) 使用者與基地台的組合最佳化三個子問題,而原始問題可以藉由輪流固定其中兩項以及最佳化另一項的方法漸漸逼近最佳解。我們在論文中分析了三個子問題,並且對每個子問題都提出了演算法。在LIS相位最佳化子問題以及使用者訊號最佳化子問題中,我們藉由輪流固定目標變數以及輔助變數逐漸逼近最佳解,在使用者與基地台的組合最佳化子問題中,我們提出了一個greedy演算法,並且證明該演算法能得到最佳的使用者與基地台的組合。
    最後,模擬的結果顯示我們的演算法可以比許多不同的方法獲得更好的WSR,
    由此可以確定我們的設計對多基地台上傳系統的系統效能有顯著的提升。


    In a natural electromagnetic propagation environment, there are many unfavorable propagation conditions such as multipath propagation, and reflections or refractions from large objects. Therefore, the environment usually has a negative effect on the communication
    efficiency and the Quality of Service (QoS).
    Large intelligent surface (LIS) is a man-made structure which consists of passive radio elements, each of the elements can reflect the incident signal by inducing a manageable phase shift, and this can make the incident signal avoid the distortion caused by objects in the environment. Therefore, LIS has been seen as a promising technology to build a programmable wireless environment for future communication systems to improve the QoS of users.
    This thesis focuses on the optimal configuration of LIS-aided multi-user uplink system with multiple base stations. We formulate it as a weighted sum rate maximization problem, which requires a joint design of the base station association, the precoders, and the LIS phase shifts. The problem is divided into the LIS phase shift optimization subproblem, the precoder optimization subproblem, and the base station association optimization subproblem. The original problem can be solved by using alternative optimization with solving the three subproblems. We analyze the three subproblems and propose optimal algorithms for each subproblem. We solve the LIS phase shift optimization subproblem and the precoder optimization subproblem by alternative optimization by solving the objective variables and the auxiliary variables, solving the base station association optimization subproblem by a greedy algorithm, and proving that we can get the optimal association by the greedy algorithm.
    Simulation results show that our algorithm achieves a better weighted sum rate than the different benchmarks, which validate that a joint LIS-aware design is critical for such a system. Besides, simulation results also show which part of the optimization algorithm is
    the critical part with different numbers of users and phase shifts.

    摘要 目錄 第一章-----1 第二章-----5 第三章-----7 第四章-----12 第五章-----26 第六章-----41

    [1]E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and R. Zhang, “Wire- less communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, 2019.

    [2]S. Hu, F. Rusek, and O. Edfors, “Beyond massive mimo: The potential of data trans- mission with large intelligent surfaces,” IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2746–2758, 2018.

    [3]H. Guo, Y. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks,” IEEE Transactions on Wireless Communications, pp. 1–1, 2020.

    [4]E. Basar, “Reconfigurable intelligent surface-based index modulation: A new be- yond mimo paradigm for 6g,” IEEE Transactions on Communications, vol. 68, no. 5, pp. 3187–3196, 2020. DOI: 10.1109/TCOMM.2020.2971486.

    [5]C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Communications Magazine, vol. 56, no. 9, pp. 162–169, 2018. DOI: 10.1109/ MCOM.2018.1700659.

    [6]Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Communications Magazine, vol. 58, no. 1, pp. 106–112, 2020. DOI: 10.1109/MCOM.001.1900107.

    [7]——, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5394–5409, 2019. DOI: 10.1109/TWC.2019.2936025.

    [8]G. Yang, X. Xu, and Y. Liang, “Intelligent reflecting surface assisted non-orthogonal multiple access,” in 2020 IEEE Wireless Communications and Networking Confer- ence (WCNC), 2020, pp. 1–6. DOI: 10.1109/WCNC45663.2020.9120476.

    [9]C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Recon- figurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 4157–4170, 2019.

    [10]M. Jung, W. Saad, Y. Jang, G. Kong, and S. Choi, “Performance analysis of large intelligent surfaces (liss): Asymptotic data rate and channel hardening effects,” IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp. 2052–2065, 2020.

    [11]C. You, B. Zheng, and R. Zhang, “Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 11, pp. 2604–2620, 2020.
    DOI: 10.1109/JSAC.2020.3007056.

    [12]Y. Gao, C. Yong, Z. Xiong, D. Niyato, Y. Xiao, and J. Zhao, “Reconfigurable in- telligent surface for miso systems with proportional rate constraints,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–7. DOI: 10.1109/ICC40277.2020.9148766.

    [13]C. Huang, G. C. Alexandropoulos, A. Zappone, M. Debbah, and C. Yuen, “Energy efficient multi-user miso communication using low resolution large intelligent sur- faces,” in 2018 IEEE Globecom Workshops (GC Wkshps), 2018, pp. 1–6. DOI: 10. 1109/GLOCOMW.2018.8644519.

    [14]Y. Han, W. Tang, S. Jin, C. Wen, and X. Ma, “Large intelligent surface-assisted wire- less communication exploiting statistical csi,” IEEE Transactions on Vehicular Tech- nology, vol. 68, no. 8, pp. 8238–8242, 2019. DOI: 10.1109/TVT.2019.2923997.

    [15]Q. Wu and R. Zhang, “Joint active and passive beamforming optimization for in- telligent reflecting surface assisted swipt under qos constraints,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1735–1748, 2020. DOI: 10. 1109/JSAC.2020.3000807.

    [16]X. Guan, Q. Wu, and R. Zhang, “Intelligent reflecting surface assisted secrecy com- munication: Is artificial noise helpful or not?” IEEE Wireless Communications Let- ters, vol. 9, no. 6, pp. 778–782, 2020. DOI: 10.1109/LWC.2020.2969629.

    [17]M. Jung, W. Saad, and G. Kong, “Spectral efficiency in large intelligent surfaces: Asymptotic analysis under pilot contamination,” in 2019 IEEE Global Communica- tions Conference (GLOBECOM), 2019, pp. 1–6.

    [18]T. Bai, C. Pan, Y. Deng, M. Elkashlan, A. Nallanathan, and L. Hanzo, “Latency minimization for intelligent reflecting surface aided mobile edge computing,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 11, pp. 2666–2682, 2020.
    DOI: 10.1109/JSAC.2020.3007035.

    [19]J. Lee and S. Leyffer, Mixed integer nonlinear programming. Springer Science & Business Media, 2011, vol. 154.

    [20]K. Shen and W. Yu, “Fractional programming for communication systems—part ii: Uplink scheduling via matching,” IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2631–2644, 2018.

    [21]——, “Fractional programming for communication systems—part i: Power con- trol and beamforming,” IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2616–2630, 2018. DOI: 10.1109/TSP.2018.2812733.

    [22]M. Hong and Z. Luo, “Distributed linear precoder optimization and base station se- lection for an uplink heterogeneous network,” IEEE Transactions on Signal Process- ing, vol. 61, no. 12, pp. 3214–3228, 2013.

    [23]J. Choi, W. Lee, Y. Kim, J. Lee, and S. Kim, “Throughput estimation based dis- tributed base station selection in heterogeneous networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 11, pp. 6137–6149, 2015.

    [24]H. Dai, Y. Huang, and L. Yang, “Game theoretic max-logit learning approaches for joint base station selection and resource allocation in heterogeneous networks,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 6, pp. 1068–1081, 2015.

    [25]“PE44820 1.7-2.2 GHz UltraCMOS RF digital phase shifter 8-bit,” https://www.psemi.com/pdf/datasheets/pe44820ds.pdf.

    QR CODE