簡易檢索 / 詳目顯示

研究生: 李忠信
Li, Chung-Hsin
論文名稱: 矽基板高頻氮化鋁鎵/氮化鎵蕭特基二極體之設計、製作與等效模型建立
Design, Fabrication, and Modeling of High-Frequency AlGaN/GaN Schottky Barrier Diodes on Silicon Substrate
指導教授: 徐碩鴻
Hsu, Shuo-Hung
口試委員: 黃國威
Huang, Guo-Wei
黃智方
Huang, Chih-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 134
中文關鍵詞: 氮化鎵氮化鋁鎵模型建立蕭特基二極體矽基板截止頻率電子束顯影指叉結構散射參數小訊號等效模型大訊號等效模型
外文關鍵詞: GaN, AlGaN, Modeling, Schottky barrier diodes, Silicon substrate, Cut-off frequency, E-beam lithography, Finger, Scattering parameters, Small-signal model, Large-signal model
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於氮化鎵材料有著寬能隙、高臨界電場以及高電子飽和速度,適合應用在高速及高功率元件,因此近年來以氮化鋁鎵/氮化鎵(AlGaN/GaN)材料為主的元件開始受到重視及討論,其中又以成長在矽(Si)基板的氮化鋁鎵/氮化鎵元件最為普及。儘管矽基板在特性上不如碳化矽(SiC)和藍寶石(sapphire)基板,但考量到成本以及未來有機會與成熟CMOS電路做整合,矽基板氮化鎵(GaN-on-Silicon)的研究被視為未來的科技主流之一。
    本論文首先設計與製作指叉(Finger)結構氮化鋁鎵/氮化鎵蕭特基二極體,接著利用此元件進行直流量測分析與高頻S參數量測分析,試圖了解此元件的直流與高頻特性表現。其中,在元件製作方面,本論文利用電子束顯影的方式製作元件陽極,藉此縮小元件尺寸並提升元件高頻特性。在直流量測分析方面,本論文透過設計不同佈局參數的元件進行直流量測,藉此分析指叉佈局參數對直流特性的影響。此外,本論文也透過直流量測結果萃取出元件理想因子、能障高度及串聯電阻。最後得到,本論文所設計的元件,其導通電壓介於0.5~0.6V之間,崩潰電壓介於35~60V之間,受元件佈局參數影響。
    在高頻S參數量測分析方面,本論文透過建立元件小訊號等效模型及大訊號等效模型,將其模擬結果與量測結果進行比對,藉此分析佈局參數對元件高頻特性的影響。最後發現,本論文所設計的最小面積元件在直流偏壓為-10V時,其fc值可達到360.9GHz,有著良好的高頻特性表現。


    GaN material has the advantage of wide band-gap, high critical electric field and high electron saturation velocity, which is suitable for high speed and high power devices. Therefore, the research of GaN-based devices began to be valued and implemented in recent years. Among all the research of GaN-based devices, GaN-on-Silicon devices gain ground nowadays. Although its characteristic is not necessary than using SiC and sapphire substrate, considering cost and the compatibility of CMOS process integration, GaN-on-Silicon is expected as one of the mainstream technologies in the future.
    In this thesis, we design and fabricate finger structure AlGaN/GaN SBD at first, and then we study DC and RF characteristics of the device by DC and S-parameter measurement. As for device fabrication, to scale down device area and improve its RF characteristics, we use E-beam to fabricate the anode. In terms of DC measurement, we measure device at different device parameters to find out the correlation between device parameters and device DC characteristics. In addition, we can extract device ideality factor, barrier height and series resistance by DC measurement result. Finally, affected by device parameters, we find out that the device has turn-on voltage between 0.5V and 0.6V and breakdown voltage between 35V and 60V.
    As for S-parameter measurement, to investigate the relationship between device parameters and device RF characteristics, we establish the small signal model and large signal model of the device and compare simulation results to device measurement results. Finally, we figure out, when DC bias equals -10V, the fc value of the smallest device reaches 360.9 GHz, which shows good RF performance.

    摘要...........................................................i Abstract......................................................ii 誌謝.........................................................iii 目錄..........................................................iv 圖表目錄......................................................vi 表格目錄.....................................................xiv 第一章 緒論....................................................1 1.1 研究背景與動機..............................................1 1.2 論文架構...................................................2 第二章 氮化鎵材料特性...........................................3 2.1 氮化鎵材料的基本特性........................................3 2.1.1 寬能隙..................................................4 2.1.2 電子遷移率及飽和速度......................................5 2.1.3 臨界電場與導通電阻........................................6 2.1.4 二維電子氣 (Two-dimension electron gas, 2DEG)............8 2.1.5 自發性與壓電極化效應......................................9 2.2 本章總結..................................................13 第三章 高頻氮化鋁鎵/氮化鎵蕭特基二極體元件設計與製程..............14 3.1 前言......................................................14 3.2 文獻回顧..................................................15 3.2.1 空橋 (Air-bridge) 結構氮化鎵二極體.......................15 3.2.2 電子束顯影技術 (E-beam lithography) 氮化鎵二極體..........18 3.2.3 利用高頻S參數萃取氮化鎵二極體小訊號模型參數................21 3.3 元件設計..................................................26 3.4 元件製程步驟..............................................29 3.4.1 黃光微影製程 (Photolithography).........................29 3.4.2 元件隔離平臺 (Mesa isolation)...........................32 3.4.3 歐姆接觸 (Ohmic contact)................................34 3.4.4 蕭特基接觸 (Schottky contact)...........................39 3.4.5 襯墊金屬層製作 (Pad metal)..............................42 3.4.6 鈍化層製作 (Passivation)................................43 3.4.7 接線窗口蝕刻 (Via etching)..............................45 3.5 量測方法 (Measurement method).............................48 3.5.1 直流量測 (DC measurement)...............................48 3.5.2 高頻量測 (High frequency measurement)...................53 3.6 本章總結..................................................55 第四章 模型分析及量測結果討論...................................56 4.1 外部參數萃取以及去嵌入 (De-embedding)......................56 4.1.1開路與短路測試法 (Open pad & Short pad)...................57 4.2 氮化鋁鎵/氮化鎵二極體高頻內部等效模型........................59 4.3 元件量測結果分析與討論......................................60 4.3.1 元件順向偏壓電流電流–電壓特性.............................60 4.3.2 元件逆向偏壓電流電流–電壓特性.............................80 4.3.3 元件高頻小訊號量測結果與分析..............................89 4.3.4 元件高頻大訊號模型建立與驗證.............................118 4.4 本章總結.................................................124 第五章 總結與未來工作.........................................125 5.1 總結 (Conclusion)........................................125 5.2 未來工作 (Future work)...................................126 References..................................................128

    [1] S. Heck, A. Bräckle, M. Berroth, S. Maroldt, and R. Quay, “A high-power dual gate GaN switching-amplifier in GHz-range,” Wireless and Microwave Technology Conference (WAMICON), 2011 IEEE 12th Annual., pp. 1-4, 2011.
    [2] U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, “GaN-Based RF power devices and amplifiers,” Proceedings of the IEEE, vol. 96, no. 2, pp. 287-305, 2008.
    [3] S. Lenci, B. De Jaeger, L. Carbonell, J. Hu, G. Mannaert, D. Wellekens, S. You, B. Bakeroot, and S. Decoutere, “Au-free AlGaN/GaN power diode on 8-in Si substrate with gated edge termination,” IEEE Electron Device Letters, vol. 34, no. 8, pp. 1035-1037, 2013.
    [4] E. B. Treidel, Oliver Hilt, Rimma Zhytnytska, Andreas Wentzel, Chafik Meliani, Joachim Wurfl, and Gunther Trankle, "Fast-switching GaN-based lateral power Schottky barrier diodes with low onset voltage and strong reverse blocking," IEEE Electron Device Letters, vol. 33, pp. 357-359, March 2012.
    [5] K. Shinohara, D. Regan, A. Corrion, D. Brown, I. Alvarado-Rodriguez, M. Cunningham, C. Bulter, A. Schmitz, S. Kim, B. Holden, D. Chang, A. Margomenos, and M. Micovic, "Deeply-scaled E/D-Mode GaN-HEMTs for Sub-mm-Wave amplifiers and mixed-signal applications," IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pp. 1-4, Oct. 2012.
    [6] D. Marcon, B. De Jaeger, S. Halder, N. Vranckx, G. Mannaert, M. Van Hove, and S. Decoutere, “Manufacturing challenges of GaN-on-Si HEMTs in a 200 mm CMOS fab,” IEEE Transactions on Semiconductor Manufacturing, vol. 26, no. 3, pp. 361-367, Aug. 2013.
    [7] O. Ambacher, “Growth and applications of group III-nitrides,” J. Physics D (Applied Physics), vol. 31, pp. 2653-2710, 1998.
    [8] L. F. Eastman and U. K. Mishra, “The toughest transistor yet,” IEEE spectrum, 39(5), pp. 28-33, 2002.
    [9] M. Willander, M. Friesel, Q. U. Wahab, and B. Straumal, “Silicon carbide and diamond for high temperature devices applications,” Journal of materials science: materials in electronics, pp. 1-25, 2006.
    [10] B. Gelmont, K. Kim, and M. Shur, “Monte carlo simulation of electron transport in gallium nitride,” J. Appl. Phys., 74 (3), pp. 1818-1821, 1993
    [11] B. J. Baliga, “Trends in power semiconductor devices,” IEEE Transaction on Electron Devices, 43(10), pp. 1717-1731, 1996
    [12] J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Transactions on power electronics, vol. 18, no. 3, May. 2003.
    [13] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol.85, pp. 3222-3233, May 1999.
    [14] S. L. Selvaraj, A. Watanabe, A. Wakejima, and T. Egawa, “1.4-kV breakdown voltage for AlGaN/GaN high-electron mobility transistors on silicon substrate,’’ IEEE Electron Device Letters, vol. 33, no. 10, pp. 1375-1377, Oct. 2012.
    [15] F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, "Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs," IEEE Transactions Electron Devices, pp. 450-457, March 2001.
    [16] G. Chattopadhyay, "Technology, Capabilities, and Performance of Low Power Terahertz Sources," IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 33-53, Sept. 2011.
    [17] J. Ward, E. Schlecht, G. Chattopadhyay, A. Maestrini, J. Gill, F. Maiwald, H. Javadi, and I. Mehdi, "Capability of THz sources based on Schottky diode frequency multiplier chains," IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1587-1590, June. 2004.
    [18] K. Fujimori, T. Wagi, K. Tsuruta, S. Nogi, Y. Ozawa, M. Furukawa, and T. Fujiwara, "Characteristics of RF-DC conversion circuit for wireless power transmission using the low resistance GaN schottky barrier diode," International Symposium on Antennas and Propagation (ISAP), pp. 190-193, 2012.
    [19] T. Oishi, N. Kawano, S. Masuya, and M. Kasu, "Diamond Schottky Barrier Diodes With NO_2 Exposed Surface and RF-DC Conversion Toward High Power Rectenna," IEEE Electron Device Letters, vol. 38, no. 1, pp. 87-90, Jan. 2017.
    [20] J. O. McSpadden, Lu Fan, and Kai Chang, "Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna," IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2053-2060, Dec. 1998.
    [21] S. Liang, Y. Fang, D. Xing, Z. Zhang, J. Wang, H. Guo, L. Zhang, G. Gu, and Z. Feng, "GaN planar Schottky barrier diode with cut-off frequency of 902 GHz," Electronics Letters, vol. 52, no. 16, pp. 1408-1410, 2016.
    [22] S. Liang, Y. Fang, D. Xing, J. Wang, L. Zhang, D. Yang, X. Zhang, and Z. Feng, "Realization of GaN-based high frequency planar schottky barrier diodes through air-bridge technology," IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1-3, 2014.
    [23] Z. H. Feng, S. X. Liang, D. Xing, J. L. Wang, D. B. Yang, Y. L. Fang, L. S. Zhang, and X. Y. Zhao, "High-frequency multiplier based on GaN planar Schottky barrier diodes," IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), pp. 1-3, 2016.
    [24] N. An, Q. Li, J. Zeng, J. Jiang, B. Lu, and W. Tan, "GaN planar schottky barrier diode with cut-off frequency of 627 GHz," China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Beijing, pp. 204-206, 2017.
    [25] C. Jin, M. Zaknoune, D. Ducatteau, and D. Pavlidis, "E-beam Fabricated GaN Schottky diode: High-frequency and non-linear properties," IEEE MTT-S International Microwave Symposium Digest, pp. 1-4, 2013.
    [26] A. Y. Tang, V. Drakinskiy, K. Yhland, J. Stenarson, T. Bryllert, and J. Stake, "Analytical Extraction of a Schottky Diode Model From Broadband S-Parameters," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 1870-1878, May 2013.
    [27] C. Tsou, H. Kang, Y. Lian, and S. S. H. Hsu, "AlGaN/GaN HEMTs on Silicon With Hybrid Schottky–Ohmic Drain for RF Applications," IEEE Transactions on Electron Devices, vol. 63, no. 11, pp. 4218-4225, Nov. 2016.
    [28] H. G. Jang, J. Na, J. J. Kim, Y. R. Park, H. S. Lee, D. Y. Jung, J. K. Mun, S. C. Ko, and E. S. Nam, "Low leakage current AlGaN/GaN on Si-based Schottky barrier diode with bonding-pad electrode mesa etching," Japanese Journal of Applied Physics, vol. 54, no. 7, pp. 070302, 2015.
    [29] J. Y. Shiu, J. C. Huang, V. Desmaris, C. T. Chang, C. Y. Lu, K. Kumakura, T. Makimoto, H. Zirath, N. Rorsman, and E. Y. Chang, “Oxygen ion implantation isolation planar process for AlGaN/GaN HEMTs,” IEEE Electron Device Letters, vol. 28, no. 6, pp. 476-478, Jun. 2007.
    [30] B. Boudart, Y. Guhel, J. C. Pesant, P. Dhamelincourt, and M. A. Poissn, “Raman characterization of Mg+ ion-implanted GaN,” J. Phys. Condens Matter, vol. 16, no. 2, pp. s49-s55, Jan. 2004.
    [31] T. Oishi, N. Miura, M. Suita, T. Nanjo, Y. Abe, T. Ozeki, H. Ishikawa, T. Egawa, and T. Jimbo, “Highly resistive GaN layers formed by ion implantation of Zn along the c-axis,” Journal of Applied Physics, vol. 94, no. 3, pp. 1662-1666, Aug. 2003.
    [32] A. Vertiatchikh, E. Kaminsky, J. Teetsov, and K. Robinson, “Structural properties of alloyed Ti/Al/Ti/Au and Ti/Al/Mo/Au Ohmic contacts to AlGaN/GaN,” Solid-State Electronics, vol. 50, no.7-8, pp. 1425-1429, Aug. 2006.
    [33] A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” Journal of Applied Physics, vol 93, no 2, pp. 1087-1094., Mar. 2013.
    [34] Z. Yang, K. Li, J. Alperin, and W. I. Wang, “Nitrogen vacancy as the donor: experimental evidence in the ammonia-assisted molecular beam epitaxy of GaN,” Journal of The Electrochemical Society, vol. 144, no. 10, pp. 3474-3476, Oct. 1997.
    [35] Y. J. Lin, Y. M. Chen, T. J. Cheng, and Q. Ker, “Schottky barrier height and nitrogen-vacancy-related defects in Ti alloy,” Journal of Applied Physics, vol. 95, no. 2, pp. 571-575, Jan. 2004.
    [36] B. Jacobs, M. C. J. C. M. Kramer, E. J. Geluk, and F. Karouta, "Optimisation of the Ti/Al/Ni/Au ohmic contact on AlGaN/GaN FET structures," Journal of Crystal Growth, vol.241, pp. 15-18, May 2002.
    [37] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, "The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs," IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 560-566, Mar. 2001.
    [38] S. Huang, Q. Jiang, S. Yang, C. Zhou, and K. J. Chen, "Effective Passivation of AlGaN/GaN HEMTs by ALD-Grown AlN Thin Film," IEEE Electron Device Letters, vol. 33, no. 4, pp. 516-518, Apr. 2012.
    [39] R. C. Fitch, D. E. Walker, K. D. Chabak, J. K. Gillespie, M. Kossler, M. Trejo, and A. Crespo, “Comparison of passivation layers for AlGaN/GaN high electron mobility transistors,” J. Vac. Sci. Technol. B, vol. 29, no. 6, pp. 061204, Oct. 2011.
    [40] J. Bernat, P. Javorka, A. Fox, M. Marso, H. Luth, and P. Kordos, "Effect of surface passivation on performance of AlGaN/GaN/Si HEMTs," Solid-State Electronics, vol. 47, pp. 2097-2103, May 2003.
    [41] J. Stenarson and K. Yhland, "Residual error models for the SOLT and SOLR VNA calibration algorithms," 2007 69th ARFTG Conference, pp. 1-7, Jun. 2007.
    [42] M. Imparato, T. Weller, and L. Dunleavy, "On-wafer calibration using space-conservative (SOLT) standards," 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282), vol. 4, pp. 1643-1646, Jun. 1999.
    [43] D. F. Williams, P. Corson, J. Sharma, H. Krishnaswamy, W. Tai, Z. George, D. S. Ricketts, P. M. Watson, E. Dacquay, and S. P. Voinigescu, "Calibrations for Millimeter-Wave Silicon Transistor Characterization," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 3, pp. 658-668, March 2014.
    [44] R. Doerner and A. Rumiantsev, "Verification of the wafer-level LRM+ calibration technique for GaAs applications up to 110 GHz," 65th ARFTG Conference Digest, pp. 15-19, Jun. 2005.
    [45] A. Davidson, K. Jones, and E. Strid, "LRM and LRRM Calibrations with Automatic Determination of Load Inductance," 36th ARFTG Conference Digest, pp. 57-63, Nov. 1990.
    [46] T. Hashizume, J. Kotani, and H. Hasegawa, “Leakage mechanism in GaN and AlGaN Schottky interfaces,” Applied Physics Letters, vol. 84, no. 24, pp. 4884-4886, Jun. 2004.
    [47] T. Kiuru, J. Mallat, A. V. Raisanen, and T. Narhi, "Schottky Diode Series Resistance and Thermal Resistance Extraction From S-Parameter and Temperature Controlled I–V Measurements," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 8, pp. 2108-2116, Aug. 2011.
    [48] C. Tang, K. Sheng, and G. Xie, "Buffer leakage induced pre-breakdown mechanism for AlGaN/GaN HEMTs on Si," International Conference on Communications, Circuits and Systems (ICCCAS), pp. 353-357, Nov. 2013.
    [49] C. Jin, D. Pavlidis, and L. Considine, "A novel GaN-based high frequency varactor diode," The 5th European Microwave Integrated Circuits Conference, pp. 118-121, Sept. 2010.
    [50] H. Jabbar, Y. S. Song, and T. T. Jeong, "RF energy harvesting system and circuits for charging of mobile devices," IEEE Transactions on Consumer Electronics, vol. 56, no. 1, pp. 247-253, Feb. 2010.
    [51] J. Semple, D. G. Georgiadou, G. W. Moon, G. Gelinck, and T. D. Anthopoulos, " Flexible diodes for radio frequency (RF) electronics: a materials perspective," Semiconductor Science and Technology, vol. 32, no. 12, pp. 123002, Oct. 2017.
    [52] K. Elgaid, H. McLelland, M. Holland, D. A. J. Moran, C. R. Stanley, and I. G. Thayne, "50-nm T-gate metamorphic GaAs HEMTs with f_T of 440 GHz and noise figure of 0.7 dB at 26 GHz," IEEE Electron Device Letters, vol. 26, no. 11, pp. 784-786, Nov. 2005.

    QR CODE