研究生: |
盧奕廷 Lu, Yi-Ting |
---|---|
論文名稱: |
二價金屬空氣電池中的氧氣電化學 Oxygen Electrochemistry in Divalent Metal-Air Batteries |
指導教授: |
胡啟章
Hu, Chi-Chang Hardwick, Laurence J. Hardwick, Laurence J. |
口試委員: |
黃炳照
Hwang, Bing-Joe 鄧熙聖 Teng, Hsisheng 吳乃立 Wu, Nae-Lih 張仍奎 Chang, Jeng-Kuei 王復民 Wang, Fu-Ming |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 171 |
中文關鍵詞: | 金屬空氣電池 、氧氣電化學 、鋅空氣電池 、鈣空氣電池 、空氣電極 |
外文關鍵詞: | metal-air battery, oxygen electrochemistry, zinc-air battery, calcium-air battery, air electrode |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是在研究二價金屬空氣電池系統之中的氧氣電化學。第一章介紹儲能裝置、基本電化學原理、以及水系/有機系兩種空氣電池的系統。第二章介紹本論文中所使用到的所有材料鑑定技術以及電化學分析技術。
在第三章中,本研究提出了一種微量鐵元素摻雜鎳鈷系氧化物與活性碳製作成之複合材料(Fe0.1Ni0.9Co2O4/AC)作為氧氣還原反應(ORR)與氧氣產生反應(OER)之雙效型觸媒。活性碳可以提升Fe0.1Ni0.9Co2O4氧化物之雙效催化能力,另一方面,活性碳表面上形成一層緻密的Fe0.1Ni0.9Co2O4奈米顆粒包覆層,可以有效保護活性碳本身不被氧化或腐蝕,使得鋅空氣電池之空氣極的循環穩定性提升。三電極式的電化學測試被用來研究觸媒的催化性能,而鋅空氣全電池則被用來研究觸媒之催化性能以及循環穩定性能。使用本研究提出之複合材料作為空氣極的觸媒,組裝成鋅空氣電池,可以在100 mA cm-2的大電流密度下,穩定充放電至少十分鐘,且可提供高達99 mW cm-2的功率密度。
在第四章中,本研究主要致力於研究氧氣還原反應與氧氣產生反應,與含有鈣離子(Ca2+)與四丁基銨陽離子(tetrabutylammonium, TBA+)之二甲基亞碸(dimethyl sulfoxide, DMSO)電解液。本研究發現電解液中若缺乏四丁基銨陽離子,則氧氣還原反應是不可逆的,循環伏安圖(cyclic voltammogram, CV)中並未呈現氧氣產生反應的電流訊號。然而若是在電解液中加入四丁基銨陽離子並且經過多圈循環伏安掃描,則循環伏安圖會呈現出一個準可逆的氧氣產生電流訊號。經由電化學測試,本研究發現此氧氣產生的電流訊號與系統施加的電位,以及電解液中兩種陽離子(鈣離子與四丁基銨離子)的濃度,有很大關聯。進一步使用旋轉環-盤電極與臨場拉曼光譜研究此氧氣產生的訊號,發現此訊號可歸因於電極/電解液介面上所生成之”四丁基銨陽離子-超氧化物“之氧化還原對。根據所有電化學與拉曼光譜得到的結果,本論文提出了在四丁基過氯酸銨/過氯酸鈣/二甲基亞碸之電解液系統中,氧氣還原的反應機制,並指出在大的還原過電位與高濃度四丁基銨陽離子的條件下,有一可逆的”四丁基銨陽離子-超氧化物“的氧化還原對可以生成。
This thesis is primarily focused on the electrochemistry of dioxygen in divalent metal-oxygen systems. Chapter 1 introduces energy storage, fundamental electrochemistry, and two distinct metal-air battery systems, using either an aqueous or non-aqueous electrolyte. Chapter 2 discusses all techniques for material characterisation and electrochemical characterisation applied in this thesis.
In Chapter 3, a composite electrocatalyst consisting of iron-doped nickel cobalt oxide and activated carbon (Fe0.1Ni0.9Co2O4/AC) was synthesised as the bifunctional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in aqueous 6 M KOH electrolytes. Activated carbon is shown to promote the bifunctionality of Fe0.1Ni0.9Co2O4 for the ORR and OER. Meanwhile, the complete coverage of Fe0.1Ni0.9Co2O4 nanoparticles on the surface of activated carbon protects the carbon substrate from corrosion/oxidation, resulting in improved cycling stability of the air electrode in zinc-air cells. Three-electrode measurements were performed to study intrinsic catalytic activity of Fe0.1Ni0.9Co2O4/AC, while zinc-air full cell employing Fe0.1Ni0.9Co2O4/AC was fabricated to study its cyclability and durability. The cell was able to discharge and charge stably for 10 min at 100 mA cm-2, with a maximum power density of 99 mW cm-2.
In Chapter 4, the ORR and OER were studied in non-aqueous electrolytes containing both Ca2+ and tetrabutylammonium (TBA+) cations in dimethyl sulfoxide (TBAClO4/Ca(ClO4)2/DMSO). The electrolyte in the absence of TBA+ showed no reversibility at all, indicated by the lack of OER behaviour in the cyclic voltammograms. However, the addition of TBA+ resulted in the appearance and growth of a quasi-reversible OER peak upon repeated cycling. This OER peak was electrochemically characterised and found to be dependent on the applied potential and the concentrations of both Ca2+ and TBA+ cations. Rotating ring-disc electrode and in situ Raman spectroscopy were employed to investigate the species relating to the observed OER peak in TBAClO4/Ca(ClO4)2/DMSO. Results suggest this OER peak originates from the TBA-O2 species formed at the electrode/electrolyte interface. Based on all electrochemical and spectroscopic investigations, a mechanism is proposed to elucidate the ORR pathway in TBAClO4/Ca(ClO4)2/DMSO electrolytes, where large reductive overpotentials and higher concentrations of TBA+ facilitate the formation of the more reversible redox TBA-O2.
1. J. B. Goodenough, Energy Storage Materials, 2015, 1, 158-161.
2. M. Vangari, T. Pryor and L. Jiang, Journal of Energy Engineering, 2012, 139, 72-79.
3. G. Z. Chen, International Materials Reviews, 2017, 62, 173-202.
4. Z. Rogulski and A. Czerwiński, Journal of Solid State Electrochemistry, 2003, 7, 118-121.
5. G. E. Blomgren, Journal of The Electrochemical Society, 2016, 164, A5019-A5025.
6. K. Kopczyński, A. Gabryelczyk, M. Baraniak, B. Łęgosz, J. Pernak, E. Jankowska, W. Rzeszutek, P. Kędzior and G. Lota, Journal of Energy Storage, 2019, 26, 100996.
7. M. Li, World Energy 2017-2050: Annual Report, https://seekingalpha.com/article/4083393-world-energy-2017minus-2050-annual-report.
8. M. H. Yap, K. L. Fow and G. Z. Chen, Green Energy & Environment, 2017, 2, 218-245.
9. A. J. Bard, L. R. Faulkner, J. Leddy and C. G. Zoski, Electrochemical methods: fundamentals and applications, wiley New York1980.
10. J. B. Goodenough, Accounts of chemical research, 2012, 46, 1053-1061.
11. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart and J. L. Dempsey, Journal of Chemical Education, 2018, 95, 197-206.
12. A. R. Mainar, E. Iruin, L. C. Colmenares, A. Kvasha, I. de Meatza, M. Bengoechea, O. Leonet, I. Boyano, Z. Zhang and J. A. Blazquez, Journal of Energy Storage, 2018, 15, 304-328.
13. J. Zhang, Q. Zhou, Y. Tang, L. Zhang and Y. Li, Chemical Science, 2019, 10, 8924-8929.
14. Y. Li and H. Dai, Chemical Society Reviews, 2014, 43, 5257-5275.
15. S. Narayanan, G. S. Prakash, A. Manohar, B. Yang, S. Malkhandi and A. Kindler, Solid State Ionics, 2012, 216, 105-109.
16. W. Li, T. Cochell and A. Manthiram, Scientific Reports, 2013, 3, 1229.
17. Y.-T. Lu, A. R. Neale, C.-C. Hu and L. J. Hardwick, Frontiers in Energy Research, 2021, 8.
18. P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue and H. Pang, Journal of Materials Chemistry A, 2017, 5, 7651-7666.
19. X. Fu, X. Hu, Z. Yan, K. Lei, F. Li, F. Cheng and J. Chen, Chemical Communications, 2016, 52, 1725-1728.
20. A. R. Mainar, O. Leonet, M. Bengoechea, I. Boyano, I. de Meatza, A. Kvasha, A. Guerfi and J. Alberto Blázquez, International Journal of Energy Research, 2016, 40, 1032-1049.
21. M. Xu, D. Ivey, Z. Xie and W. Qu, Journal of Power Sources, 2015, 283, 358-371.
22. N. Fujiwara, M. Yao, Z. Siroma, H. Senoh, T. Ioroi and K. Yasuda, Journal of Power Sources, 2011, 196, 808-813.
23. J. Park, M. Park, G. Nam, J. s. Lee and J. Cho, Advanced Materials, 2015, 27, 1396-1401.
24. J. Fu, D. U. Lee, F. M. Hassan, L. Yang, Z. Bai, M. G. Park and Z. Chen, Advanced materials, 2015, 27, 5617-5622.
25. H.-W. Kim, J.-M. Lim, H.-J. Lee, S.-W. Eom, Y. T. Hong and S.-Y. Lee, Journal of Materials Chemistry A, 2016, 4, 3711-3720.
26. H. Kim, G. Jeong, Y.-U. Kim, J.-H. Kim, C.-M. Park and H.-J. Sohn, Chemical Society Reviews, 2013, 42, 9011-9034.
27. L. Baugh, F. Tye and N. White, Journal of Applied Electrochemistry, 1983, 13, 623-635.
28. Y. Ein-Eli, M. Auinat and D. Starosvetsky, Journal of power sources, 2003, 114, 330-337.
29. J. Vatsalarani, S. Geetha, D. Trivedi and P. Warrier, Journal of power sources, 2006, 158, 1484-1489.
30. J. Vatsalarani, D. Trivedi, K. Ragavendran and P. Warrier, Journal of the Electrochemical Society, 2005, 152, A1974-A1978.
31. S. J. Banik and R. Akolkar, Electrochimica Acta, 2015, 179, 475-481.
32. X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F. W. T. Goh, T. S. A. Hor, Y. Zong and Z. Liu, ACS Catalysis, 2015, 5, 4643-4667.
33. M. I. Awad and T. Ohsaka, Journal of Power Sources, 2013, 226, 306-312.
34. J. Stacy, Y. N. Regmi, B. Leonard and M. Fan, Renewable and Sustainable Energy Reviews, 2017, 69, 401-414.
35. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, The Journal of Physical Chemistry B, 2004, 108, 17886-17892.
36. Q. Jin, B. Ren, D. Li, H. Cui and C. Wang, Nano Energy, 2018, 49, 14-22.
37. C. Iwakura, K. Fukuda and H. Tamura, Electrochimica Acta, 1976, 21, 501-508.
38. S. M. Jasem and A. C. C. Tseung, Journal of The Electrochemical Society, 1979, 126, 1353-1360.
39. E. Fabbri, A. Habereder, K. Waltar, R. Kötz and T. J. Schmidt, Catalysis Science & Technology, 2014, 4, 3800-3821.
40. F. Wang, T. A. Shifa, X. Zhan, Y. Huang, K. Liu, Z. Cheng, C. Jiang and J. He, Nanoscale, 2015, 7, 19764-19788.
41. J. Yu, B.-Q. Li, C.-X. Zhao, J.-N. Liu and Q. Zhang, Advanced Materials, 2020, 32, 1908488.
42. W. Lao-atiman, S. Olaru, A. Arpornwichanop and S. Kheawhom, Scientific Data, 2019, 6, 168.
43. P. Wang, L. Wan, Y. Lin and B. Wang, Electrochimica Acta, 2019, 320, 134564.
44. D. Schröder, T. Arlt, U. Krewer and I. Manke, Electrochemistry Communications, 2014, 40, 88-91.
45. J. Fu, F. M. Hassan, J. Li, D. U. Lee, A. R. Ghannoum, G. Lui, M. A. Hoque and Z. Chen, Advanced Materials, 2016, 28, 6421-6428.
46. K. Xu, A. Loh, B. Wang and X. Li, Journal of The Electrochemical Society, 2018, 165, A809-A818.
47. M. Ma, W. Zhu, Q. Shao, H. Shi, F. Liao, C. Shao and M. Shao, ACS Applied Nano Materials, 2021, 4, 1478-1484.
48. N. N. Kariuki, X. Wang, J. R. Mawdsley, M. S. Ferrandon, S. G. Niyogi, J. T. Vaughey and D. J. Myers, Chemistry of Materials, 2010, 22, 4144-4152.
49. C. Liu, F. Dong, M. Wu, Y. Wang, N. Xu, X. Wang, J. Qiao, P. Shi and H. Huang, Journal of Power Sources, 2019, 438, 226953.
50. K. Kusada, D. Wu, T. Yamamoto, T. Toriyama, S. Matsumura, W. Xie, M. Koyama, S. Kawaguchi, Y. Kubota and H. Kitagawa, Chemical Science, 2019, 10, 652-656.
51. Q. Xue, H.-Y. Sun, Y.-N. Li, M.-J. Zhong, F.-M. Li, X. Tian, P. Chen, S.-B. Yin and Y. Chen, Chemical Engineering Journal, 2021, 421, 129760.
52. G. Wang, L. Xiao, B. Huang, Z. Ren, X. Tang, L. Zhuang and J. Lu, Journal of Materials Chemistry, 2012, 22, 15769-15774.
53. H. Chen, M. Nishijima, G. Wang, S. Khene, M. Zhu, X. Deng, X. Zhang, W. Wen, Y. Luo and Q. He, Journal of The Electrochemical Society, 2017, 164, F1654-F1661.
54. H. Liu and J. Yang, Journal of Materials Chemistry A, 2014, 2, 7075-7081.
55. E. Fidiani, G. Thirunavukkarasu, Y. Li, Y.-L. Chiu and S. Du, Journal of Materials Chemistry A, 2020, 8, 11874-11883.
56. L. Chen, C. P. Deming, Y. Peng, P. Hu, J. Stofan and S. Chen, Nanoscale, 2016, 8, 14565-14572.
57. C. Yang, B. Huang, L. Xiao, Z. Ren, Z. Liu, J. Lu and L. Zhuang, Chemical Communications, 2013, 49, 11023-11025.
58. L. E. Betancourt, A. Rojas-Pérez, I. Orozco, A. I. Frenkel, Y. Li, K. Sasaki, S. D. Senanayake and C. R. Cabrera, ACS Applied Energy Materials, 2020, 3, 2342-2349.
59. X.-J. Liu, X. Yin, Y.-D. Sun, F.-J. Yu, X.-W. Gao, L.-J. Fu, Y.-P. Wu and Y.-H. Chen, Nanoscale, 2020, 12, 5368-5373.
60. H. Guo, M. L. Minus, S. Jagannathan and S. Kumar, ACS Applied Materials & Interfaces, 2010, 2, 1331-1342.
61. S. Zhang, H. Wang, J. Liu and C. Bao, Materials Letters, 2020, 261, 127098.
62. J. Wang, Z. Zhang, Q. Zhang, J. Liu and J. Ma, Journal of Materials Science, 2018, 53, 16466-16475.
63. E. Lam and J. H. Luong, ACS catalysis, 2014, 4, 3393-3410.
64. Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T. F. Jaramillo, J. K. Nørskov and Y. Cui, Nature Catalysis, 2018, 1, 156-162.
65. P.-C. Li, C.-C. Hu, T.-H. You and P.-Y. Chen, Carbon, 2017, 111, 813-821.
66. V. P. Vasiliev, A. S. Kotkin, V. K. Kochergin, R. A. Manzhos and A. G. Krivenko, Journal of Electroanalytical Chemistry, 2019, 851, 113440.
67. Z. Jiang, Z.-j. Jiang, X. Tian and W. Chen, Journal of Materials Chemistry A, 2014, 2, 441-450.
68. S. K. Bikkarolla, P. Cumpson, P. Joseph and P. Papakonstantinou, Faraday Discussions, 2014, 173, 415-428.
69. H.-H. Yang and R. L. McCreery, Journal of The Electrochemical Society, 2000, 147, 3420.
70. J. Woo, J. S. Lim, J. H. Kim and S. H. Joo, Chemical Communications, 2021, 57, 7350-7361.
71. H.-W. Liang, X. Zhuang, S. Brüller, X. Feng and K. Müllen, Nature communications, 2014, 5, 4973.
72. T. Van Tam, S. G. Kang, K. F. Babu, E.-S. Oh, S. G. Lee and W. M. Choi, Journal of Materials Chemistry A, 2017, 5, 10537-10543.
73. Z. Yao, H. Nie, Z. Yang, X. Zhou, Z. Liu and S. Huang, Chemical Communications, 2012, 48, 1027-1029.
74. P. Chen, L.-K. Wang, G. Wang, M.-R. Gao, J. Ge, W.-J. Yuan, Y.-H. Shen, A.-J. Xie and S.-H. Yu, Energy & Environmental Science, 2014, 7, 4095-4103.
75. D.-S. Yang, D. Bhattacharjya, S. Inamdar, J. Park and J.-S. Yu, Journal of the American Chemical Society, 2012, 134, 16127-16130.
76. W. Li, D. Yang, H. Chen, Y. Gao and H. Li, Electrochimica Acta, 2015, 165, 191-197.
77. Y. Sato, D. Kowalski, Y. Aoki and H. Habazaki, Applied Catalysis A: General, 2020, 597, 117555.
78. S. Möller, S. Barwe, J. Masa, D. Wintrich, S. Seisel, H. Baltruschat and W. Schuhmann, Angewandte Chemie International Edition, 2020, 59, 1585-1589.
79. I. S. Filimonenkov, C. Bouillet, G. Kéranguéven, P. A. Simonov, G. A. Tsirlina and E. R. Savinova, Electrochimica Acta, 2019, 321, 134657.
80. J. Zhang, Z. Zhao, Z. Xia and L. Dai, Nature Nanotechnology, 2015, 10, 444-452.
81. T. Sun, J. Wang, C. Qiu, X. Ling, B. Tian, W. Chen and C. Su, Advanced Science, 2018, 5, 1800036.
82. Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi and K. Hashimoto, Nature Communications, 2013, 4, 2390.
83. T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, Angewandte Chemie International Edition, 2014, 53, 7281-7285.
84. Y. L. Cao, H. X. Yang, X. P. Ai and L. F. Xiao, Journal of Electroanalytical Chemistry, 2003, 557, 127-134.
85. F. Cheng, Y. Su, J. Liang, Z. Tao and J. Chen, Chemistry of Materials, 2010, 22, 898-905.
86. W. Xiao, D. Wang and X. W. Lou, The Journal of Physical Chemistry C, 2010, 114, 1694-1700.
87. P.-C. Li, C.-C. Hu, H. Noda and H. Habazaki, Journal of Power Sources, 2015, 298, 102-113.
88. S. K. Ghosh, ACS Omega, 2020, 5, 25493-25504.
89. M. Prabu, K. Ketpang and S. Shanmugam, Nanoscale, 2014, 6, 3173-3181.
90. S. V. Devaguptapu, S. Hwang, S. Karakalos, S. Zhao, S. Gupta, D. Su, H. Xu and G. Wu, ACS Applied Materials & Interfaces, 2017, 9, 44567-44578.
91. D. Pletcher, X. Li, S. W. T. Price, A. E. Russell, T. Sönmez and S. J. Thompson, Electrochimica Acta, 2016, 188, 286-293.
92. W. Wang, L. Kuai, W. Cao, M. Huttula, S. Ollikkala, T. Ahopelto, A.-P. Honkanen, S. Huotari, M. Yu and B. Geng, Angewandte Chemie International Edition, 2017, 56, 14977-14981.
93. J. Bao, Z. Wang, W. Liu, L. Xu, F. Lei, J. Xie, Y. Zhao, Y. Huang, M. Guan and H. Li, Journal of Alloys and Compounds, 2018, 764, 565-573.
94. K. Sasidharachari, K. Y. Cho and S. Yoon, ACS Applied Energy Materials, 2020, 3, 3293-3301.
95. X. Chen, J. Xu, Y. Xu, F. Luo and Y. Du, Inorganic Chemistry Frontiers, 2019, 6, 2226-2238.
96. C. E. Beall, E. Fabbri and T. J. Schmidt, ACS Catalysis, 2021, 11, 3094-3114.
97. Y. Xu, A. Tsou, Y. Fu, J. Wang, J.-H. Tian and R. Yang, Electrochimica Acta, 2015, 174, 551-556.
98. A. Ashok, A. Kumar, R. R. Bhosale, F. Almomani, S. S. Malik, S. Suslov and F. Tarlochan, Journal of Electroanalytical Chemistry, 2018, 809, 22-30.
99. W. Liu, J. Bao, L. Xu, M. Guan and Y. Lei, Journal of Power Sources, 2020, 479, 229099.
100. Y. Su, H. Liu, C. Li, J. Liu, Y. Song and F. Wang, Journal of Alloys and Compounds, 2019, 799, 160-168.
101. J.-I. Jung, M. Risch, S. Park, M. G. Kim, G. Nam, H.-Y. Jeong, Y. Shao-Horn and J. Cho, Energy & Environmental Science, 2016, 9, 176-183.
102. J. Du, T. Zhang, F. Cheng, W. Chu, Z. Wu and J. Chen, Inorganic Chemistry, 2014, 53, 9106-9114.
103. Q. Huang, C. Li, Y. Tu, Y. Jiang, P. Mei and X. Yan, Ceramics International, 2021, 47, 1602-1608.
104. A. Zhao, J. Masa, W. Xia, A. Maljusch, M.-G. Willinger, G. Clavel, K. Xie, R. Schlögl, W. Schuhmann and M. Muhler, Journal of the American Chemical Society, 2014, 136, 7551-7554.
105. K. Elumeeva, J. Masa, J. Sierau, F. Tietz, M. Muhler and W. Schuhmann, Electrochimica Acta, 2016, 208, 25-32.
106. D. U. Lee, M. G. Park, H. W. Park, M. H. Seo, V. Ismayilov, R. Ahmed and Z. Chen, Electrochemistry Communications, 2015, 60, 38-41.
107. W. Yan, Z. Yang, W. Bian and R. Yang, Carbon, 2015, 92, 74-83.
108. X. He, F. Yin, S. Yuan, N. Liu and X. Huang, ChemElectroChem, 2016, 3, 1107-1115.
109. K. Liu, J. Li, Q. Wang, X. Wang, D. Qian, J. Jiang, J. Li and Z. Chen, Journal of Alloys and Compounds, 2017, 725, 260-269.
110. P. Kolla, G. Nasymov, R. Rajappagowda and A. Smirnova, Journal of Power Sources, 2020, 446, 227234.
111. C. Alegre, C. Busacca, A. Di Blasi, O. Di Blasi, A. S. Aricò, V. Antonucci and V. Baglio, Materials Today Energy, 2020, 18, 100508.
112. H. Lin, J. Xie, Z. Zhang, S. Wang and D. Chen, Journal of Colloid and Interface Science, 2021, 581, 374-384.
113. N. Xu, J. Qiao, X. Zhang, C. Ma, S. Jian, Y. Liu and P. Pei, Applied energy, 2016, 175, 495-504.
114. X. Liu, M. Park, M. G. Kim, S. Gupta, G. Wu and J. Cho, Angewandte Chemie International Edition, 2015, 54, 9654-9658.
115. X. Yan, Y. Jia, T. Odedairo, X. Zhao, Z. Jin, Z. Zhu and X. Yao, Chemical Communications, 2016, 52, 8156-8159.
116. T. Iwazaki, R. Obinata, W. Sugimoto and Y. Takasu, Electrochemistry Communications, 2009, 11, 376-378.
117. M. He, K. Fic, E. Fra, P. Novák and E. J. Berg, Energy & Environmental Science, 2016, 9, 623-633.
118. Y. Li and J. Lu, ACS Energy Letters, 2017, 2, 1370-1377.
119. L. Grande, E. Paillard, J. Hassoun, J. B. Park, Y. J. Lee, Y. K. Sun, S. Passerini and B. Scrosati, Advanced materials, 2015, 27, 784-800.
120. N. Xiao, X. Ren, W. D. McCulloch, G. Gourdin and Y. Wu, Accounts of chemical research, 2018, 51, 2335-2343.
121. C. Sheng, F. Yu, Y. Wu, Z. Peng and Y. Chen, Angewandte Chemie, 2018, 130, 10054-10058.
122. D. Aurbach, B. D. McCloskey, L. F. Nazar and P. G. Bruce, Nature Energy, 2016, 1, 16128.
123. W. M. Haynes, CRC handbook of chemistry and physics, CRC press2014.
124. K. Abraham and Z. Jiang, Journal of The Electrochemical Society, 1996, 143, 1-5.
125. T. Ogasawara, A. Débart, M. Holzapfel, P. Novák and P. G. Bruce, Journal of the American Chemical Society, 2006, 128, 1390-1393.
126. P. Hartmann, C. L. Bender, M. Vračar, A. K. Dürr, A. Garsuch, J. Janek and P. Adelhelm, Nature Materials, 2013, 12, 228-232.
127. X. Ren and Y. Wu, Journal of the American Chemical Society, 2013, 135, 2923-2926.
128. Z. Luo, Y. Li, Z. Liu, L. Pan, W. Guan, P. Liu and D. Wang, ChemSusChem, 2019, 12, 4962-4967.
129. C. Li, J. Wei, K. Qiu and Y. Wang, ACS Applied Materials & Interfaces, 2020, 12, 23010-23016.
130. T. A. Ha, C. Pozo-Gonzalo, K. Nairn, D. R. MacFarlane, M. Forsyth and P. C. Howlett, Scientific Reports, 2020, 10, 7123.
131. S. Han, C. Cai, F. Yang, Y. Zhu, Q. Sun, Y. G. Zhu, H. Li, H. Wang, Y. Shao-Horn, X. Sun and M. Gu, ACS Nano, 2020, 14, 3669-3677.
132. P. Gilmore and V. B. Sundaresan, Batteries & Supercaps, 2019, 2, 662-662.
133. K. Hu, L. Qin, S. Zhang, J. Zheng, J. Sun, Y. Ito and Y. Wu, ACS Energy Letters, 2020, 5, 1788-1793.
134. D. Duan, X. You, W. Ren, H. Wei, H. Liu and S. Liu, International Journal of Hydrogen Energy, 2015, 40, 10847-10855.
135. L. Johnson, C. Li, Z. Liu, Y. Chen, S. A. Freunberger, P. C. Ashok, B. B. Praveen, K. Dholakia, J.-M. Tarascon and P. G. Bruce, Nature Chemistry, 2014, 6, 1091-1099.
136. W. Yang, J. Salim, C. Ma, Z. Ma, C. Sun, J. Li, L. Chen and Y. Kim, Electrochemistry Communications, 2013, 28, 13-16.
137. D. Kundu, R. Black, B. Adams and L. F. Nazar, ACS Central Science, 2015, 1, 510-515.
138. C. O. Laoire, S. Mukerjee, K. Abraham, E. J. Plichta and M. A. Hendrickson, The Journal of Physical Chemistry C, 2010, 114, 9178-9186.
139. R. G. Parr and R. G. Pearson, Journal of the American Chemical Society, 1983, 105, 7512-7516.
140. J. Lu, L. Li, J.-B. Park, Y.-K. Sun, F. Wu and K. Amine, Chemical reviews, 2014, 114, 5611-5640.
141. S. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Bardé, P. Novák and P. G. Bruce, Journal of the American Chemical Society, 2011, 133, 8040-8047.
142. W. Xu, V. V. Viswanathan, D. Wang, S. A. Towne, J. Xiao, Z. Nie, D. Hu and J.-G. Zhang, Journal of Power Sources, 2011, 196, 3894-3899.
143. M. J. Trahan, S. Mukerjee, E. J. Plichta, M. A. Hendrickson and K. M. Abraham, Journal of The Electrochemical Society, 2012, 160, A259-A267.
144. W. Xu, J. Xiao, J. Zhang, D. Wang and J.-G. Zhang, Journal of the Electrochemical Society, 2009, 156, A773-A779.
145. H.-G. Jung, J. Hassoun, J.-B. Park, Y.-K. Sun and B. Scrosati, Nature chemistry, 2012, 4, 579.
146. S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Bardé and P. G. Bruce, Angewandte Chemie International Edition, 2011, 50, 8609-8613.
147. V. Gutmann, Coordination Chemistry Reviews, 1976, 18, 225-255.
148. W. Wang, N. C. Lai, Z. Liang, Y. Wang and Y. C. Lu, Angewandte Chemie International Edition, 2018, 57, 5042-5046.
149. T. A. Galloway, G. Attard and L. J. Hardwick, Electrochemistry Communications, 2020, 119, 106814.
150. Z. Peng, S. A. Freunberger, L. J. Hardwick, Y. Chen, V. Giordani, F. Bardé, P. Novák, D. Graham, J.-M. Tarascon and P. G. Bruce, Angewandte Chemie International Edition, 2011, 50, 6351-6355.
151. A. Alsudairi, A. Lajami, I. Kendrick, S. Mukerjee and K. M. Abraham, Journal of The Electrochemical Society, 2019, 166, A305-A317.
152. P. Reinsberg, A.-E.-A. A. Abd-El-Latif and H. Baltruschat, Electrochimica Acta, 2018, 273, 424-431.
153. L. J. Hardwick and C. P. de León, Johnson Matthey Technology Review, 2018, 62, 134-149.
154. J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang and J.-G. Zhang, Nature Energy, 2019, 4, 180-186.
155. S. Wang, W. Cai, Z. Sun, F. Huang, Y. Jie, Y. Liu, Y. Chen, B. Peng, R. Cao, G. Zhang and S. Jiao, Chemical Communications, 2019, 55, 14375-14378.
156. X. Zhao, F. Chen, J. Liu, M. Cheng, H. Su, J. Liu and Y. Xu, Journal of Materials Chemistry A, 2020, 8, 5671-5678.
157. T. Leisegang, F. Meutzner, M. Zschornak, W. Münchgesang, R. Schmid, T. Nestler, R. A. Eremin, A. A. Kabanov, V. A. Blatov and D. C. Meyer, Frontiers in Chemistry, 2019, 7.
158. J. Fu, R. Liang, G. Liu, A. Yu, Z. Bai, L. Yang and Z. Chen, Advanced Materials, 2019, 31, 1805230.
159. W. Sun, F. Wang, B. Zhang, M. Zhang, V. Küpers, X. Ji, C. Theile, P. Bieker, K. Xu, C. Wang and M. Winter, Science, 2021, 371, 46.
160. P. Chen, K. Zhang, D. Tang, W. Liu, F. Meng, Q. Huang and J. Liu, Frontiers in Chemistry, 2020, 8.
161. M. Jäckle, K. Helmbrecht, M. Smits, D. Stottmeister and A. Groß, Energy & Environmental Science, 2018, 11, 3400-3407.
162. A. Ponrouch, J. Bitenc, R. Dominko, N. Lindahl, P. Johansson and M. R. Palacin, Energy Storage Materials, 2019, 20, 253-262.
163. D. S. Tchitchekova, D. Monti, P. Johansson, F. Bardé, A. Randon-Vitanova, M. R. Palacín and A. Ponrouch, Journal of The Electrochemical Society, 2017, 164, A1384-A1392.
164. D. M. Overcash and F. C. Mathers, Transactions of The Electrochemical Society, 1933, 64, 305.
165. J. H. Connor, W. E. Reid and G. B. Wood, Journal of The Electrochemical Society, 1957, 104, 38.
166. C. Liebenow, Journal of Applied Electrochemistry, 1997, 27, 221-225.
167. T. Kakibe, N. Yoshimoto, M. Egashira and M. Morita, Electrochemistry Communications, 2010, 12, 1630-1633.
168. J. Luo, Y. Bi, L. Zhang, X. Zhang and T. L. Liu, Angewandte Chemie International Edition, 2019, 58, 6967-6971.
169. H. Wang, X. Feng, Y. Chen, Y.-S. Liu, K. S. Han, M. Zhou, M. H. Engelhard, V. Murugesan, R. S. Assary, T. L. Liu, W. Henderson, Z. Nie, M. Gu, J. Xiao, C. Wang, K. Persson, D. Mei, J.-G. Zhang, K. T. Mueller, J. Guo, K. Zavadil, Y. Shao and J. Liu, ACS Energy Letters, 2020, 5, 200-206.
170. D. Aurbach, R. Skaletsky and Y. Gofer, Journal of The Electrochemical Society, 1991, 138, 3536-3545.
171. A. Ponrouch, C. Frontera, F. Bardé and M. R. Palacín, Nature Materials, 2016, 15, 169-172.
172. D. Wang, X. Gao, Y. Chen, L. Jin, C. Kuss and P. G. Bruce, Nature Materials, 2018, 17, 16-20.
173. A. Shyamsunder, L. E. Blanc, A. Assoud and L. F. Nazar, ACS Energy Letters, 2019, 4, 2271-2276.
174. Z. Li, O. Fuhr, M. Fichtner and Z. Zhao-Karger, Energy & Environmental Science, 2019, 12, 3496-3501.
175. X. Ren, S. S. Zhang, D. T. Tran and J. Read, Journal of Materials Chemistry, 2011, 21, 10118-10125.
176. B. McCloskey, A. Speidel, R. Scheffler, D. Miller, V. Viswanathan, J. Hummelshøj, J. Nørskov and A. Luntz, The journal of physical chemistry letters, 2012, 3, 997-1001.
177. Y. J. Lee, S. H. Park, S. H. Kim, Y. Ko, K. Kang and Y. J. Lee, ACS Catalysis, 2018, 8, 2923-2934.
178. L. Zou, Y. Jiang, J. Cheng, Y. Gong, B. Chi, J. Pu and L. Jian, Electrochimica Acta, 2016, 216, 120-129.
179. J. Lu, Y. J. Lee, X. Luo, K. C. Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. Wen, D. Zhai and Z. Chen, Nature, 2016, 529, 377.
180. W.-M. Liu, W.-W. Yin, F. Ding, L. Sang and Z.-W. Fu, Electrochemistry Communications, 2014, 45, 87-90.
181. B. Sun, K. Kretschmer, X. Xie, P. Munroe, Z. Peng and G. Wang, Advanced Materials, 2017, 29, 1606816.
182. Z. Ma, Y. Ren, R. Li, Y.-D. Wang, L. Zhou, X. Wu, Y. Wei and H. Gao, Materials Science and Engineering: A, 2018, 712, 358-364.
183. S. Brunauer, P. H. Emmett and E. Teller, Journal of the American chemical society, 1938, 60, 309-319.
184. P. Bruttel and R. Schlink, Metrohm monograph, 2003, 8, 50003.
185. I. Nordin-Andersson and A. Cedergren, Analytical Chemistry, 1985, 57, 2571-2575.
186. C. Oraedd and A. Cedergren, Analytical Chemistry, 1994, 66, 2603-2607.
187. S. Grünke, Food Control, 2001, 12, 419-426.
188. E. Peters and J. Jungnickel, Analytical Chemistry, 1955, 27, 450-453.
189. R. Panneerselvam, G.-K. Liu, Y.-H. Wang, J.-Y. Liu, S.-Y. Ding, J.-F. Li, D.-Y. Wu and Z.-Q. Tian, Chemical Communications, 2018, 54, 10-25.
190. M. Fleischmann, P. J. Hendra and A. J. McQuillan, Chemical physics letters, 1974, 26, 163-166.
191. E. Perevedentseva, A. Karmenyan, P.-H. Chung, Y.-T. He and C.-L. Cheng, Surface science, 2006, 600, 3723-3728.
192. S. Lohumi, M. S. Kim, J. Qin and B.-K. Cho, TrAC Trends in Analytical Chemistry, 2017, 93, 183-198.
193. D. Stevens and J. Dahn, Journal of The Electrochemical Society, 2003, 150, A770-A775.
194. P. Zhang, L. Li, D. Nordlund, H. Chen, L. Fan, B. Zhang, X. Sheng, Q. Daniel and L. Sun, Nature communications, 2018, 9, 381.
195. M. Søgaard, M. Odgaard and E. M. Skou, Solid State Ionics, 2001, 145, 31-35.
196. J. Nikolic, E. Expósito, J. Iniesta, J. González-Garcia and V. Montiel, Journal of Chemical Education, 2000, 77, 1191.
197. W. Xing, G. Yin and J. Zhang, Rotating electrode methods and oxygen reduction electrocatalysts, Elsevier2014.
198. S. J. Lee, S. I. Pyun, S. K. Lee and S. J. L. Kang, Israel Journal of Chemistry, 2008, 48, 215-228.
199. F. Dalton, The Electrochemical Society Interface, 2016, 25, 50-59.
200. H. Kuiken, E. Bakkers, H. Ligthart and J. Kelly, Journal of the Electrochemical Society, 2000, 147, 1110-1116.
201. Q.-A. Huang, R. Hui, B. Wang and J. Zhang, Electrochimica Acta, 2007, 52, 8144-8164.
202. N. Afsarimanesh, S. C. Mukhopadhyay and M. Kruger, Electrochemical Biosensor: Point-of-Care for Early Detection of Bone Loss, Springer2019.
203. C. Fernández-Sánchez, C. J. McNeil and K. Rawson, TrAC Trends in Analytical Chemistry, 2005, 24, 37-48.
204. G. Inzelt, A. Lewenstam and F. Scholz, Handbook of reference electrodes, Springer2013.
205. C. G. Zoski, Handbook of electrochemistry, Elsevier2006.
206. T.-H. You and C.-C. Hu, ACS applied materials & interfaces, 2018, 10, 10064-10075.
207. G. Liu, L. Zhang, S. Wang, L.-X. Ding and H. Wang, Journal of Materials Chemistry A, 2017, 5, 14530-14536.
208. J. Marco, J. Gancedo, M. Gracia, J. Gautier, E. Rios and F. Berry, Journal of Solid State Chemistry, 2000, 153, 74-81.
209. Y.-T. Lu, Y.-J. Chien, C.-F. Liu, T.-H. You and C.-C. Hu, Journal of Materials Chemistry A, 2017, 5, 21016-21026.
210. C. Ma, N. Xu, J. Qiao, S. Jian and J. Zhang, International Journal of Hydrogen Energy, 2016, 41, 9211-9218.
211. N. Xu, Y. Liu, X. Zhang, X. Li, A. Li, J. Qiao and J. Zhang, Scientific reports, 2016, 6, 33590.
212. M. Prabu, P. Ramakrishnan, H. Nara, T. Momma, T. Osaka and S. Shanmugam, ACS applied materials & interfaces, 2014, 6, 16545-16555.
213. C. Alegre, E. Modica, A. Aricò and V. Baglio, Journal of Electroanalytical Chemistry, 2018, 808, 412-419.
214. T. Li, Y. Lu, S. Zhao, Z.-D. Gao and Y.-Y. Song, Journal of Materials Chemistry A, 2018, 6, 3730-3737.
215. Y. Xu, B. Chen, J. Nie and G. Ma, Nanoscale, 2018, 10, 17021-17029.
216. X. Yan, Y. Jia, J. Chen, Z. Zhu and X. Yao, Advanced Materials, 2016, 28, 8771-8778.
217. F. Rodríguez-reinoso, Carbon, 1998, 36, 159-175.
218. K.-H. Chang, Y.-F. Lee, C.-C. Hu, C.-I. Chang, C.-L. Liu and Y.-L. Yang, Chemical Communications, 2010, 46, 7957-7959.
219. P.-C. Li, Y.-J. Chien and C.-C. Hu, Journal of Power Sources, 2016, 313, 37-45.
220. A. Jain and S. Tripathi, Journal of Energy Storage, 2015, 4, 121-127.
221. J. Xu, Q. Gao, Y. Zhang, Y. Tan, W. Tian, L. Zhu and L. Jiang, Scientific reports, 2014, 4, 5545.
222. G. Zhang, J. Qu, H. Liu, A. T. Cooper and R. Wu, Chemosphere, 2007, 68, 1058-1066.
223. S.-C. Lin, Y.-T. Lu, Y.-A. Chien, J.-A. Wang, T.-H. You, Y.-S. Wang, C.-W. Lin, C.-C. M. Ma and C.-C. Hu, Journal of Power Sources, 2017, 362, 258-269.
224. Y. Liu, S. Wen and W. Shi, Materials Letters, 2018, 214, 194-197.
225. Q. Chu, W. Wang, X. Wang, B. Yang, X. Liu and J. Chen, Journal of Power Sources, 2015, 276, 19-25.
226. M. Y. Ho, P. S. Khiew, D. Isa and W. S. Chiu, Functional Materials Letters, 2014, 7, 1440012.
227. G. J. Brug, A. L. G. van den Eeden, M. Sluyters-Rehbach and J. H. Sluyters, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 176, 275-295.
228. P. Zoltowski, Journal of Electroanalytical Chemistry, 1998, 443, 149-154.
229. M. Holzapfel, A. Martinent, F. Alloin, B. Le Gorrec, R. Yazami and C. Montella, Journal of Electroanalytical Chemistry, 2003, 546, 41-50.
230. J. Wang, Y. Fu, Y. Xu, J. Wu, J.-H. Tian and R. Yang, International Journal of Hydrogen Energy, 2016, 41, 8847-8854.
231. B. Avasarala, R. Moore and P. Haldar, Electrochimica Acta, 2010, 55, 4765-4771.
232. P. Pei, K. Wang and Z. Ma, Applied Energy, 2014, 128, 315-324.
233. C.-S. Li, Y. Sun, F. Gebert and S.-L. Chou, Advanced Energy Materials, 2017, 7, 1700869.
234. J. G. Smith, J. Naruse, H. Hiramatsu and D. J. Siegel, Chemistry of Materials, 2016, 28, 1390-1401.
235. P. Reinsberg, C. J. Bondue and H. Baltruschat, The Journal of Physical Chemistry C, 2016, 120, 22179-22185.
236. Q. Yu and S. Ye, The Journal of Physical Chemistry C, 2015, 119, 12236-12250.
237. T. A. Galloway and L. J. Hardwick, The Journal of Physical Chemistry Letters, 2016, 7, 2119-2124.
238. L. E. Roy, E. Jakubikova, M. G. Guthrie and E. R. Batista, The Journal of Physical Chemistry A, 2009, 113, 6745-6750.
239. G. Gritzner, Journal of Molecular Liquids, 2010, 156, 103-108.
240. I. M. Aldous and L. J. Hardwick, The Journal of Physical Chemistry Letters, 2014, 5, 3924-3930.
241. P. Fischer, P. Reinsberg, R. M. Schwarz, M. Marinaro, M. Wachtler, T. Diemant, R. J. Behm, H. Baltruschat and L. Jörissen, Journal of The Electrochemical Society, 2018, 165, A2037-A2046.
242. P. Reinsberg, C. Bondue and H. Baltruschat, Electrochimica Acta, 2016, 200, 214-221.
243. P. Lou, Z. Cui and X. Guo, Journal of Materials Chemistry A, 2017, 5, 18207-18213.
244. A. I. Belova, D. G. Kwabi, L. V. Yashina, Y. Shao-Horn and D. M. Itkis, The Journal of Physical Chemistry C, 2017, 121, 1569-1577.
245. Z. Deng and D. E. Irish, The Journal of Physical Chemistry, 1994, 98, 9371-9373.
246. W. R. Fawcett, M. Fedurco and M. Opallo, The Journal of Physical Chemistry, 1992, 96, 9959-9964.
247. M. He, K. C. Lau, X. Ren, N. Xiao, W. D. McCulloch, L. A. Curtiss and Y. Wu, Angewandte Chemie International Edition, 2016, 55, 15310-15314.
248. W. N. Martens, R. L. Frost, J. Kristof and J. Theo Kloprogge, Journal of Raman Spectroscopy, 2002, 33, 84-91.
249. M. I. S. Sastry and S. Singh, Canadian Journal of Chemistry, 1985, 63, 1351-1356.
250. F. S. Gittleson, K. P. C. Yao, D. G. Kwabi, S. Y. Sayed, W.-H. Ryu, Y. Shao-Horn and A. D. Taylor, ChemElectroChem, 2015, 2, 1446-1457.
251. I. M. Aldous and L. J. Hardwick, Angewandte Chemie International Edition, 2016, 55, 8254-8257.
252. T. A. Galloway, J.-C. Dong, J.-F. Li, G. Attard and L. J. Hardwick, Chemical Science, 2019, 10, 2956-2964.
253. S. C. Su and A. T. Bell, Catalysis Letters, 1996, 36, 15-19.
254. M.-J. Kim, H.-J. Kang, W. B. Im and Y.-S. Jun, ChemSusChem, 2020, 13, 574-581.
255. D. G. Kwabi, M. Tułodziecki, N. Pour, D. M. Itkis, C. V. Thompson and Y. Shao-Horn, The Journal of Physical Chemistry Letters, 2016, 7, 1204-1212.
256. Y. T. Law, J. Schnaidt, S. Brimaud and R. J. Behm, Journal of Power Sources, 2016, 333, 173-183.
257. M. Bozorgchenani, P. Fischer, J. Schnaidt, T. Diemant, R. M. Schwarz, M. Marinaro, M. Wachtler, L. Jörissen and R. J. Behm, ChemElectroChem, 2018, 5, 2600-2611.