研究生: |
江俊諺 Jiang, Jun-Yan |
---|---|
論文名稱: |
微波乾燥技術在污水處理與生質燃料領域的研究 Study of Microwave Drying Technology in the Fields of Wastewater Treatment and Biomass Fuel |
指導教授: |
張存續
Chang, Tsun-Hsu |
口試委員: |
趙賢文
王明瑞 楊佳璋 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 39 |
中文關鍵詞: | 微波乾燥技術 、污水處理 、生質燃料 、能源轉型 、綠色能源 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球人口快速增長和工業運作擴張的背景下,環境議題在污水處理和可再生能源領域尤其凸顯。實現能源轉型和降低碳排放的關鍵在於生質能源,被公認為綠色和可持續的能源來源。然而,在生質能源的生產和利用方面仍存在許多技術障礙,需要創造性的解決方案來提高生質資源的可利用性。
生質能源的崛起和對環境可持續性的真正關切共同推動著這項研究。傳統的污水處理系統浪費能源並可能引發排放問題,而目前的生質燃料生產技術存在產量和能源效率的限制。本研究聚焦於微波乾燥技術,旨在解決這些問題,探討其在生質燃料生產和污水處理方面的潛在應用。
微波乾燥技術由於其有效的能量轉移和快速加熱能力,具有極大的資源回收和能源轉換潛力。在污水處理領域,微波乾燥可實現污泥的快速乾燥,同時能耗較低,且次生污染風險較小,有可能改變現有的處理方法。此外,將微波乾燥技術應用於生質燃料的生產過程中,可能顯著提高生質資源的乾燥效率,從而提高燃料產量,減少對有限化石燃料的依賴。
然而,要實現這些應用,必須仔細考慮環境法規和可持續發展目標。為確保這些過程不會對環境造成進一步的危害,本研究致力於確保微波乾燥技術在污水處理和生質燃料生產中的應用符合環境保護要求。通過技術創新和法規遵守,我們確信可以推動環保友好的生質能源技術的發展,並幫助實現可持續發展目標。
Environmental issues have risen in prominence, notably in the fields of wastewater treatment and renewable energy, against the backdrop of a fast expanding global population and expanding industrial operations. The key to realizing the energy transition and lowering carbon emissions is biomass energy, which is acknowledged as a green and sustainable energy source. However, a number of technological obstacles still exist in the production and use of bioenergy, calling for creative solutions to improve the profitability of biomass resources.
The rise of bioenergy and genuine concern for environmental sustainability serve as the driving forces behind this study. Traditional wastewater treatment systems waste energy and pose possible emission issues, while current biofuel production technologies have yield and energy efficiency restrictions. This study focuses on microwave drying technology to overcome these problems, looking at its possible uses for both biofuel production and wastewater treatment.
Microwave drying technology has a great deal of potential for resource recovery and energy conversion due to its effective energy transfer and quick heating capabilities. Microwave drying, when used in the context of wastewater treatment, permits quick sludge drying while consuming less energy and posing a lower danger of secondary contamination, possibly changing current treatment methods. In addition, the use of microwave drying technology in the manufacture of biofuels may significantly improve the drying efficiency of biomass resources, resulting in higher fuel yields and less dependency on limited fossil fuels.
However, in order to make these applications a reality, it is important to carefully take environmental laws and sustainable development goals into account. In order to guarantee that the procedures do not cause further environmental harm, this study is devoted to verifying that the use of microwave drying technology in wastewater treatment and biofuel production complies with environmental protection requirements. We are certain that we can advance the development of environmentally friendly bioenergy technologies and help to realize the objectives of sustainable development via technical innovation and regulatory observance.
[1] Muhammad Yaqub and W. Lee, “Zero-liquid Discharge (ZLD) Technology for Resource
Recovery from wastewater: a Review,” Science of the Total Environment, vol. 681, pp. 551–563, Sep.
2019, doi: https://doi.org/10.1016/j.scitotenv.2019.05.062.
[2] Z. Y. Li, R. F. Wang, and T. Kudra, “Uniformity Issue in Microwave Drying,” Drying
Technology, vol. 29, no. 6, pp. 652–660, Apr. 2011, doi:
https://doi.org/10.1080/07373937.2010.521963.
[3] M. K. Krokida and Z. B. Maroulis, “Effect of Microwave Drying on Some Quality Properties
of Dehydrated Products,” Drying Technology, vol. 17, no. 3, pp. 449–466, Mar. 1999, doi:
https://doi.org/10.1080/07373939908917545.
[4] J. C. Atuonwu and S. A. Tassou, “Quality Assurance in Microwave Food Processing and the
Enabling Potentials of solid-state Power generators: a Review,” Journal of Food Engineering, vol. 234,
pp. 1–15, Oct. 2018, doi: https://doi.org/10.1016/j.jfoodeng.2018.04.009.
[5] D. Wray and H. S. Ramaswamy, “Novel Concepts in Microwave Drying of Foods,” Drying
Technology, vol. 33, no. 7, pp. 769–783, Jan. 2015, doi:
https://doi.org/10.1080/07373937.2014.985793.
[6] G. SHARMA and S. PRASAD, “Specific Energy Consumption in Microwave Drying of Garlic
Cloves,” Energy, vol. 31, no. 12, pp. 1921–1926, Sep. 2006, doi:
https://doi.org/10.1016/j.energy.2005.08.006.
[7] D. Arslan and M. Musa Özcan, “Study the Effect of sun, Oven and Microwave Drying on
Quality of Onion Slices,” LWT - Food Science and Technology, vol. 43, no. 7, pp. 1121–1127, Sep.
2010, doi: https://doi.org/10.1016/j.lwt.2010.02.019.
[8] H. Feng, Y. Yin, and J. Tang, “Microwave Drying of Food and Agricultural Materials: Basics
and Heat and Mass Transfer Modeling,” Food Engineering Reviews, vol. 4, no. 2, pp. 89–106, Jan.
2012, doi: https://doi.org/10.1007/s12393-012-9048-x.
[9] M. Zarein, S. H. Samadi, and B. Ghobadian, “Investigation of Microwave Dryer Effect on
Energy Efficiency during Drying of Apple Slices,” Journal of the Saudi Society of Agricultural
Sciences, vol. 14, no. 1, pp. 41–47, Jan. 2015, doi: https://doi.org/10.1016/j.jssas.2013.06.002.
[10] A. Wojdyło, A. Figiel, K. Lech, P. Nowicka, and J. Oszmiański, “Effect of Convective and
Vacuum–Microwave Drying on the Bioactive Compounds, Color, and Antioxidant Capacity of Sour
Cherries,” Food and Bioprocess Technology, vol. 7, no. 3, pp. 829–841, May 2013, doi:
https://doi.org/10.1007/s11947-013-1130-8.
[11] J. Bondaruk, M. Markowski, and W. Błaszczak, “Effect of Drying Conditions on the Quality of
vacuum-microwave Dried Potato Cubes,” Journal of Food Engineering, vol. 81, no. 2, pp. 306–312,
Jul. 2007, doi: https://doi.org/10.1016/j.jfoodeng.2006.10.028.
[12] S. Pang and A. S. Mujumdar, “Drying of Woody Biomass for Bioenergy: Drying Technologies
and Optimization for an Integrated Bioenergy Plant,” vol. 28, no. 5, pp. 690–701, May 2010, doi:
https://doi.org/10.1080/07373931003799236.
[13] M. Verma, C. Loha, A. N. Sinha, and P. K. Chatterjee, “Drying of Biomass for Utilising in co-
firing with Coal and Its Impact on Environment – a Review,” Renewable and Sustainable Energy
Reviews, vol. 71, pp. 732–741, May 2017, doi: https://doi.org/10.1016/j.rser.2016.12.101.
[14] Q. Yu et al., “Physical and Chemical Properties of waste-activated Sludge after Microwave
Treatment,” Water Research, vol. 44, no. 9, pp. 2841–2849, May 2010, doi:
https://doi.org/10.1016/j.watres.2009.11.057.
[15] R. Wei, P. Wang, G. Zhang, N. Wang, and T. Zheng, “Microwave-responsive Catalysts for
Wastewater treatment: a Review,” Chemical Engineering Journal, vol. 382, p. 122781, Feb. 2020, doi:
https://doi.org/10.1016/j.cej.2019.122781.
[16] P. M. Mawioo, A. Rweyemamu, H. A. Garcia, C. M. Hooijmans, and D. Brdjanovic,“Evaluation of a Microwave Based Reactor for the Treatment of Blackwater Sludge,” Science of The
Total Environment, vol. 548–549, pp. 72–81, Apr. 2016, doi:
https://doi.org/10.1016/j.scitotenv.2016.01.013.
[17] N. Remya and J.-G. Lin, “Current Status of Microwave Application in Wastewater treatment—
A Review,” Chemical Engineering Journal, vol. 166, no. 3, pp. 797–813, Feb. 2011, doi:
https://doi.org/10.1016/j.cej.2010.11.100.
[18] E. Vialkova, M. Zemlyanova, and A. Fugaeva, “Treatment and Utilization of Liquid
Communal Waste in the Cities,” MATEC Web of Conferences, vol. 212, p. 03005, 2018, doi:
https://doi.org/10.1051/matecconf/201821203005.
[19] L. Zhang, X. Guo, F. Yan, M. Su, and Y. Li, “Study of the Degradation Behaviour of
Dimethoate under Microwave irradiation.,” Journal of Hazardous Materials, vol. 149, no. 3, pp. 675–9,
Nov. 2007, doi: https://doi.org/10.1016/j.jhazmat.2007.04.039.
[20] V. I. Kichigin, Кичигин Виктор Иванович, M. Zemlyanova, Землянова Марина
Витальевна, E. A. Vyalkova, and Вялкова Елена Александровна, “Study of the Possibility of Using
Microwave Radiation for the Treatment of Liquid Municipal Waste,” Gradostroitelʹstvo I Arhitektura,
Mar. 2018, doi: https://doi.org/10.17673/vestnik.2018.01.8.
[21] A. Mudhoo and S. K. Sharma, “Microwave Irradiation Technology in Waste Sludge and
Wastewater Treatment Research,” Critical Reviews in Environmental Science and Technology, vol. 41,
no. 11, pp. 999–1066, Apr. 2011, doi: https://doi.org/10.1080/10643380903392767.
[22] E. Vialkova, M. Obukhova, and L. Belova, “Microwave Irradiation in Technologies of
Wastewater and Wastewater Sludge Treatment: a Review,” Water, vol. 13, no. 13, p. 1784, Jun. 2021,
doi: https://doi.org/10.3390/w13131784.
[23] E. Vialkova, M. Zemlyanova, and O. F. Danilov, “Energy Efficiency in Municipal Waste
Treatment,” MATEC Web of Conferences, vol. 170, pp. 04020–04020, Jan. 2018, doi:
https://doi.org/10.1051/matecconf/201817004020.
[24] L. Bennamoun, P. Arlabosse, and A. Léonard, “Review on Fundamental Aspect of Application
of Drying Process to Wastewater Sludge,” Renewable and Sustainable Energy Reviews, vol. 28, pp.
29–43, Dec. 2013, doi: https://doi.org/10.1016/j.rser.2013.07.043.
[25] S. Feng, L. Xiao, Z. Ge, L. Yang, X. Du, and H. Wu, “Parameter Analysis of Atomized
Droplets Sprayed Evaporation in Flue Gas Flow,” International Journal of Heat and Mass Transfer, vol.
129, pp. 936–952, Feb. 2019, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.023.
[26] M. Olazar, G. Lopez, H. Altzibar, M. Amutio, and J. Bilbao, “Drying of Biomass in a Conical
Spouted Bed with Different Types of Internal Devices,” Drying Technology, vol. 30, no. 2, pp. 207–
216, Nov. 2011, doi: https://doi.org/10.1080/07373937.2011.633194.
[27] G. Crini and P. M. Badot, “Starch-based Biosorbents for Dyes in Textile Wastewater
Treatment,” International Journal of Environmental Technology and Management, vol. 12, no. 2/3/4, p.
129, 2010, doi: https://doi.org/10.1504/ijetm.2010.031524.
[28] L. Pereira and M. Alves, “Dyes—Environmental Impact and Remediation,” Environmental
Protection Strategies for Sustainable Development, pp. 111–162, Sep. 2011, doi:
https://doi.org/10.1007/978-94-007-1591-2_4.
[29] A. Motevali, S. Minaei, and M. H. Khoshtagaza, “Evaluation of Energy Consumption in
Different Drying Methods,” Energy Conversion and Management, vol. 52, no. 2, pp. 1192–1199, Feb.
2011, doi: https://doi.org/10.1016/j.enconman.2010.09.014.
[30] A. S. Mujumdar and S. V. Jangam, “Some Innovative Drying Technologies for Dehydration of
Foods,” Proceedings of ICEF, Athens, Greece, 2011, Available:
https://api.semanticscholar.org/CorpusID:113400676
[31] F. Xu et al., “Research on Atomization Evaporation Characteristics and Parameter
Optimization of a Novel Spray Evaporation Desalting System,” Desalination, vol. 542, p. 116057, Nov.
2022, doi: https://doi.org/10.1016/j.desal.2022.116057.
[32] H. S. EL-Mesery, “Improving the Thermal Efficiency and Energy Consumption of Convective
Dryer Using Various Energy Sources for Tomato Drying,” Alexandria Engineering Journal, vol. 61,
no. 12, pp. 10245–10261, Dec. 2022, doi: https://doi.org/10.1016/j.aej.2022.03.076.
[33] K. Lu et al., “Experimental Investigation and Theoretical Modeling on Scale Behaviors of High Salinity Wastewater in Zero Liquid Discharge Process of Coal Chemical Industry,” Chinese
Journal of Chemical Engineering, vol. 28, no. 4, pp. 969–979, Apr. 2020, doi:
https://doi.org/10.1016/j.cjche.2020.01.001.