研究生: |
李安平 An-Ping Lee |
---|---|
論文名稱: |
大氣壓下氦氣的同軸介質屏障放電及表面屏障放電的特性研究 Characteristics of Atmospheric Pressure Coaxial Dielectric Barrier Discharge and Surface Dielectric Barrier Discharge in Helium |
指導教授: |
寇崇善
Chwung-Shan Kou |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 大氣電漿 、表面屏障放電 、同軸介質屏障放電 |
外文關鍵詞: | Atmospheric plasma, surface barrier discharge, coaxial dielectric barrier discharge |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的為發展大氣電漿源表面介質屏障放電(surface barrier discharge, SD)和同軸介質屏障放電(coaxial dielectric barrier discharge, CDBD)兩種大氣電漿源以及探討在大氣壓下氦氣在兩種結構中的放電之行為。氦氣在這兩種結構中的放電電流波形皆為多脈衝形式,脈衝寬度可達幾十個□s,和一般高氣壓下產生的streamer的單一脈衝寬度只有幾十個ns不同,故屬於輝光放電,實驗結果顯示電流脈衝的數目隨著電壓上升而增加,隨著頻率或氣流量的增加而減少。在表面介質屏障放電的實驗中平均放電功率為外加電壓峰值的二次函數,並利用此二次函數估計電漿平均密度約為109 cm-3,但是在同軸介質屏障放電的實驗中放電功率卻是外加電壓峰值的線性函數,故無法使用相同方法估計電漿密度,另外我們也利用OES觀察兩者氦氣放電的光譜特性,並且使用Boltzmann plot 得到電子激發溫度,表面介質屏障放電的電子激發溫度隨著外加電壓峰值和頻率的上升而增加,同軸介質阻擋放電的電子激發溫度卻不隨外加電壓和頻率改變。本研究並探討其在表面處理上的特性。
[1] M. Goldman and N. Goldman, “Corona discharges,” in Gaseous Electronics, vol. 1, M. N. Hirsh and H. J. Oskam, Eds. New York: Academic, 1978, pp. 219–290.
[2] Min Hur and Sang Hee Hong, J. Phys. D: Appl. Phys. 35 1946 (2002)
[3] Kogelschatz U, IEEE Trans. Plasma Sci. 30, 1400 (2002)
[4] J. R. Roth Industrial Plasma Engineering Philadelphia, PA:IOP 1995, vol. 1.
[5] D. Korzec , E. G. finantu-Dinu , G. L. Dinu , J. Engemann , M. Stefecka , M. Kando, Surf. Coat. Technol. 503, 174 (2003)
[6] J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, R. F. Hicks, and G. S.Selwyn, Plasma Source Sci. Technol. 7, 282 (1998)
[7] S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn, and R.F. Hicks,” Plasma Source Sci. Technol., 7, 286 (1998)
[8] R. Bartnikas, “Note on discharges in helium under a.c. conditions,” Brit.
[9] R. Bartnikas, J. Appl. Phys., 1, 659(1968)
[10] K. G. Donohoe, Ph.D. dissertation, Calif. Inst. Technol., Pasadena, CA, 1976.
[11] K. G. Donohoe and T.Wydeven, J. Appl. Polymer Sci., 23, 2591(1979)
[12] S. Yagi, M. Hishii, N. Tabata, H. Nagai, and A. Nagai, Laser Eng., 5, 171 (1977)
[13] M. Tanaka, S. Yagi, and N. Tabata, “High frequency silent discharge and its application to cw CO laser application,” in Proc. 8th Ind. Conf. Gas Discharges and Their Applications, vol. 1, Oxford, UK, 1985, pp. 551–554.
[14] K. Yasui, M. Kuzumoto, S. Ogawa, M. Tanaka, and S. Yagi, IEEE J. Quantum Electron., 25, 836 (1989)
[15] H. Nagai, M. Hishii, M. Tanaka, Y. Myoi, H. Wakata, T. Yagi, and N.Tabata, IEEE J. Quantum Electron., vol. 29, pp. 2898–2909, Dec.1993.
[16] S. Yagi and M. Kuzumoto, Aust. J. Phys., 48, 411 (1995)
[17] S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D, Appl. Phys., 21,838 (1988)
[18] F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. S□gur, and C.Mayoux, J. Appl. Phys., 83, pp. 2950 (1998)
[19] N. Gheradi, G. Gouda, E. Gat, A. Ricard, and F. Massines, Plasma Source Sci. Technol., 9, 340 (2000)
[20] N. Gheradi, and F. Massines, IEEE Trans.Plasma Sci., 29, 536 (2001)
[21] T. C. Montie, K. Kelly-Wintenberg, and J. R. Roth, IEEE Trans.Plasma Sci., 28, 41 (2000)
[22] H.Raether, Electron Avalanches and Breaqkdown in Gases, Butterworths, London, 1964
[23]H. D. Hagstrum, Phys. Rev. 104, 672 (1956)
[24 ] A. J. Palmer, Appl. Phys. Lett. 25, 138, (1974)
[25] F. Massines, and G. Gouda, J. Phys. D, Appl. Phys. 31, 3411,(1998)
[26] F. Massines, R. Messaoudi, and C. Mayoux, Plasma Polymers 3, 43(1998)
[27] B. Eliasson, M. Hirth, and U. Kogelschatz, J. Phys. D, Appl. Phys., 20, 1421 (1987)
[28] Radu I, Bartnikas R and Wertheimer M R, IEEE Trans. Plasma Sci. 31, 1363 (2003)
[29] Bartinikas R and Novak J P, IEEE Trans. Elect. Insulation 27, 3(1992)
[30] Stefecka M, Korzec D, Siry M, Imahori Y and Kando M, Sci. Technol. Adv. Mater. 2, 587 (2001)
[31] Golubovskii Yu B, Maiorov V A, Behnke J and Behnke J F, J. Phys. D.: Appl. Phys. 35, 751(2002)
[32] NIST Atomic Spectra Database - home page, http://physics.nist.gov/PhysRefData/ASD/index.html
[33] Dr. James D. Getty, “How Plasma-Enhenced Surface Modification Improves the Production of Microelectronics and Optoelectronics” Technical Forum
[34] Y.W. Park, N. Inagaki, polymer 44,1 569 (2003)
[35] T. Young, Philos. Trans. R. Soc. Lomd. 95, 65 (1805)
[36] L. A. Girifalco, R, J, Good, J. Phys. Chem. 61, 904 (1957)