研究生: |
李易撰 Li, Yi-Chuan |
---|---|
論文名稱: |
克雷伯氏肺炎菌RstA反應調節蛋白質DNA結合區與雙股DNA複合體的結晶學結構研究 Crystallographic study of the Klebsiella pneumoniae RstA DNA binding domain complex with double-stranded DNA |
指導教授: |
蕭傳鐙
Hsiao, Chwan-Deng 孫玉珠 Sun, Yuh-Ju |
口試委員: |
蕭傳鐙
Hsiao, Chwan-Deng 孫玉珠 Sun, Yuh-Ju 黃太煌 Huang, Tai-huang 陳金榜 Chen, Chinpan 殷献生 Yin, Hsien-Sheng |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 雙蛋白質調節系統 、克雷伯氏肺炎菌 |
外文關鍵詞: | RstA, PmrA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當環境的化學分子或離子成分發生變化時,細菌通常藉由雙蛋白質調節系統(two-component system)以調控細胞內蛋白質表現,進而對環境變化做出反應。RstA/B則是對於環境中酸鹼值變化的調控蛋白質。酸性環境會讓細胞膜上的訊息受器RstB將細胞內的RstA磷酸化,活化後的RstA與特定DNA序列(RstA box)結合並開啟下游蛋白質表現,幫助形成細菌生物膜以在酸性環境中生存。RstA包含N端的磷酸接受區域(receiver domain, RD)與C端的DNA結合區域(DNA-binding domain,DBD)。磷酸接受區域活化後的RstA會以二聚體形式存在。我們以x-ray對晶體繞射分析解出克雷伯氏肺炎菌(Klebsiella pneumonia) RstA DBD和RstA box DNA 複合物的原子層次結構。另外,等溫滴定微量熱儀(isothermal titration calorimetry)的分析中顯示RstA與DNA結合模式為連續的,第一個RstA與DNA結合後會改變第二個RstA與DNA結合的強度。從結構與結合模式分析中,我們可以瞭解RstA二聚體提供一個平台讓第一個RstA DBD與特定DNA序列結合後,幫助第二個RstA結合並辨識正確的DNA序列。
PmrA/B是雙蛋白質調節系統中對於環境中含有抗生素多黏菌素(polymyxin)、鐵離子、鋁離子或微酸環境時的調節蛋白質。PmrA調控許多與改變細菌細胞壁上的脂多醣(lipopolysaccharides, LPS)組成有關的蛋白質。脂多醣組成改變後能有效地抵抗多黏菌素與宿主細胞產生的抗微生物胜肽。PmrA也是由N端的磷酸接受區域(receiver domain, RD)與C端的DNA結合區域(DNA-binding domain,DBD)所組成。磷酸接受區域活化後的PmrA會以二聚體形式存在。我們以x-ray對晶體繞射分析解出克雷伯氏肺炎菌PmrA和PmrA box DNA 複合物的原子層次結構。在此完整的PmrA和PmrA box DNA 複合物結構中,我們發現一新穎的磷酸接受區域對DNA結合區域的結合面,並且發現PmrA二聚體與DNA結合時是不對稱的。PmrA二聚體與DNA結合的不對稱性,也許與招攬RNA聚合酶時兩個PmrA單體會扮演不同角色有關。
The RstA/RstB system is a bacterial two-component regulatory system consisting of the membrane sensor, RstB, and its cognate response regulator (RR) RstA. The RstA of Klebsiella pneumoniae (kpRstA) consists of an N-terminal receiver domain (RD, residues 1-119) and a C-terminal DNA-binding domain (DBD, residues 130-236). Phosphorylation of kpRstA induces dimerization, which allows two kpRstA DBDs to bind to a tandem repeat, called the RstA box, and regulate the expression of downstream genes. Here we report the crystal structure of the kpRstA DBD/RstA box DNA complex. The structure of the kpRstA DBD/RstA box complex suggests that the upstream and downstream RstA DBDs interact with the RstA box in a different way. Combine with the equilibrium binding studies supported by Dr. Tai-huang Huang’s lab. The ITC analysis data revealed the two protomers within the kpRstA dimer bind to the RstA box in a sequential manner. Taken together, our results suggest a binding model where dimerization of the kpRstA RDs provides the platform to allow the first kpRstA DBD protomer to anchor protein-DNA interaction, whereas the second protomer plays a key role in ensuring correct recognition of the RstA box.
The PmrA/PmrB two-component system is the major regulator involved in the gene expression for lipopolysaccharides (LPS) modification in bacteria. PmrA is activated when the environment Fe3+, Al3+ and mild acidic environments. It activates genes including pbgPE, cptA and ugd can encode enzymes to change the composition of LPS. After modification, LPS can resist to polymyxin B and other host-derived antimicrobial peptides. The PmrA of Klebsiella pneumoniae (kpPmrA) is also consists of an N-terminal receiver domain (RD, residues 1-120) and a C-terminal DNA-binding domain (DBD, residues 126-226). Here we report the crystal structure of the kpPmrA/PmrA box DNA complex. Our intact response regulator complexed to DNA is asymmetric and reveals a novel heterodomain interface. A unique set of interactions between RD-DBD was observed. The asymmetric orientation of the PmrA dimer may play an important role in RNA polymerase recruitment through the upstream transactivation loop.
References
1. Bachhawat, P., and Stock, A.M. (2007). Crystal Structures of the Receiver Domain of the Response Regulator PhoP from Escherichia coli in the Absence and Presence of the Phosphoryl Analog Beryllofluoride. Journal of Bacteriology 189, 5987-5995.
2. Bachhawat, P., Swapna, G.V.T., Montelione, G.T., and Stock, A.M. (2005). Mechanism of Activation for Transcription Factor PhoB Suggested by Different Modes of Dimerization in the Inactive and Active States. Structure 13, 1353-1363.
3. Blanco, A.G., Canals, A., Bernués, J., Solà, M., and Coll, M. (2011). The structure of a transcription activation subcomplex reveals how σ70 is recruited to PhoB promoters. The EMBO Journal 30, 3776-3785.
4. Blanco, A.G., Sola, M., Gomis-Rüth, F.X., and Coll, M. (2002). Tandem DNA Recognition by PhoB, a Two-Component Signal Transduction Transcriptional Activator. Structure 10, 701-713.
5. Cabeza, M.L., Aguirre, A., Soncini, F.C., and Vescovi, E.G. (2007). Induction of RpoS Degradation by the Two-Component System Regulator RstA in Salmonella enterica. J. Bacteriol. 189, 7335-7342.
6. Chang, C., and Stewart, R.C. (1998). The Two-Component System: Regulation of Diverse Signaling Pathways in Prokaryotes and Eukaryotes. Plant Physiol. 117, 723-731.
7. del Castillo-Rueda, A., and Khosravi-Shahi, P. (2010). [The role of iron in the interaction between host and pathogen]. Med. Clin. (Barc). 134, 452-456.
8. Ellison, D.W., and McCleary, W.R. (2000). The unphosphorylated receiver domain of PhoB silences the activity of its output domain. J Bacteriol 182, 6592-6597.
9. Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta crystallographica. Section D, Biological crystallography 60, 2126-2132.
10. Gao, R., Mack, T.R., and Stock, A.M. (2007). Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem. Sci 32, 225-234.
11. Groisman, E.A. (2001). The Pleiotropic Two-Component Regulatory System PhoP-PhoQ J. Bacteriol. 183, 1835-1842.
12. Heras, B., and Martin, J.L. (2005). Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallographica Section D 61, 1173-1180.
13. Jeon, J., Kim, H., Yun, J., Ryu, S., Groisman, E.A., and Shin, D. (2008). RstA-Promoted Expression of the Ferrous Iron Transporter FeoB under Iron-Replete Conditions Enhances Fur Activity in Salmonella enterica. Journal of Bacteriology 190, 7326-7334.
14. Lou, Y.-C., Wang, I., Rajasekaran, M., Kao, Y.-F., Ho, M.-R., Hsu, S.-T.D., Chou, S.-H., Wu, S.-H., and Chen, C. (2013). Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae. Nucleic Acids Research.
15. Mao, X.-M., Zhou, Z., Cheng, L.-Y., Hou, X.-P., Guan, W.-J., and Li, Y.-Q. (2009). Involvement of SigT and RstA in the differentiation of Streptomyces coelicolor. FEBS Lett. 583, 3145-3150.
16. Martinez-Hackert, E., and Stock, A.M. (1997). The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor. . Structure 5, 109-124.
17. McPherson, A. (1990a). Current approaches to macromolecular crystallization. European Journal of Biochemistry 189, 1-23.
18. McPherson, A. (1990b). Current approaches to macromolecular crystallization. Eur. J. Biochem. 189, 1-23.
19. Mizuno, T., and Tanaka, I. (1997). Structure of the DNA-binding domain of the OmpR family of response regulators. Mol. Microbiol. 24, 665-667.
20. Nam, D., Choi, E., Kweon, D.-H., and Shin, D. (2010). The RstB sensor acts on the PhoQ sensor to control expression of PhoP-regulated genes. Mol. Cells 30, 363-368.
21. Narayanan, A., Kumar, S., Evrard, A.N., Paul, L.N., and Yernool, D.A. (2014). An asymmetric heterodomain interface stabilizes a response regulator-DNA complex. Nature communications 5, 3282.
22. Narayanan, A., Paul, L.N., Tomar, S., Patil, D.N., Kumar, P., and Yernool, D.A. (2012). Structure-function studies of DNA binding domain of response regulator KdpE reveals equal affinity interactions at DNA half-sites. PloS one 7, e30102.
23. Nixon, B.T., Ronson, C.W., and Ausubel, F.M. (1986). Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proceedings of the National Academy of Sciences 83, 7850-7854.
24. Ogasawara, H., Hasegawa, A., Kanda, E., Miki, T., Yamamoto, K., and Ishihama, A. (2007). Genomic SELEX Search for Target Promoters under the Control of the PhoQP-RstBA Signal Relay Cascade. Journal of Bacteriology 189, 4791-4799.
25. Ogasawara, H., Yamada, K., Kori, A., Yamamoto, K., and Ishihama, A. (2010a). Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. Microbiology 156, 2470-2483.
26. Ogasawara, H., Yamamoto, K., and Ishihama, A. (2010b). Regulatory role of MlrA in transcription activation of csgD, the master regulator of biofilm formation in Escherichia coli. FEMS Microbiology Letters 312, 160-168.
27. Otwinowski, Z., and Minor, W. (1997a). [20] Processing of X-ray diffraction data collected in oscillation mode. In Methods in Enzymology, Charles W. Carter, Jr., ed. (Academic Press), pp. 307-326.
28. Otwinowski, Z., and Minor, W. (1997b). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326.
29. Parkinson, J.S., and Kofoid, E.C. (1992). Communication Modules in Bacterial Signaling Proteins. Annu. Rev. Genet. 26, 71-112.
30. Rhee, J.E., Sheng, W., Morgan, L.K., Nolet, R., Liao, X., and Kenney, L.J. (2008). Amino acids important for DNA recognition by the response regulator OmpR. J Biol Chem 283, 8664-8677.
31. Stock, A.M., Martinez-Hackert, E., Rasmussen, B.F., West, A.H., Stock, J.B., Ringe, D., and Petsko, G.A. (1993). Structure of the Mg(2+)-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry 32, 13375-13380.
32. Toro-Roman, A., Mack, T.R., and Stock, A.M. (2005a). Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: A symmetric dimer mediated by the alpha 4-beta 5-alpha 5 face. J Mol Biol 349, 11-26.
33. Toro-Roman, A., Mack, T.R., and Stock, A.M. (2005b). Structural Analysis and Solution Studies of the Activated Regulatory Domain of the Response Regulator ArcA: A Symmetric Dimer Mediated by the α4-β5-α5 Face. Journal of Molecular Biology 349, 11-26.
34. Toro-Roman, A., Wu, T., and Stock, A.M. (2005c). A common dimerization interface in bacterial response regulators KdpE and TorR. Protein Sci 14, 3077-3088.
35. Whitworth, D.E., and Cock, P.J.A. (2009). Evolution of prokaryotic two-component systems: insights from comparative genomics. Amino Acids 37, 459-466.
36. Yamamoto, K. (2004). Functional Characterization in Vitro of All Two-component Signal Transduction Systems from Escherichia coli. J. Biol. Chem. 280, 1448-1456.
37. Zogaj, X., Bokranz, W., Nimtz, M., and Römling, U. (2003). Production of Cellulose and Curli Fimbriae by Members of the Family Enterobacteriaceae Isolated from the Human Gastrointestinal Tract. Infection and Immunity 71, 4151-4158.
38. Zwart, P.H., Afonine, P.V., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., McKee, E., Moriarty, N.W., Read, R.J., Sacchettini, J.C., et al. (2008). Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419-435.
39. Gao, R., Mack, T.R., and Stock, A.M. (2007). Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem. Sci 32, 225-234.
40. Chang, C., and Stewart, R.C. (1998). The Two-Component System: Regulation of Diverse Signaling Pathways in Prokaryotes and Eukaryotes. Plant Physiol. 117, 723-731.
41. Groisman, E.A. (2001). The Pleiotropic Two-Component Regulatory System PhoP-PhoQ J. Bacteriol. 183, 1835-1842.
42. Nixon, B.T., Ronson, C.W., and Ausubel, F.M. (1986). Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proceedings of the National Academy of Sciences 83, 7850-7854.
43. Parkinson, J.S., and Kofoid, E.C. (1992). Communication Modules in Bacterial Signaling Proteins. Annu. Rev. Genet. 26, 71-112.
44. Chen, H. D. and E. A. Groisman (2013). "The Biology of the PmrA/PmrB Two-Component System: The Major Regulator of Lipopolysaccharide Modifications." Annual Review of Microbiology 67(1): 83-112.
45. Wosten, M.M., Kox, L.F., Chamnongpol, S., Soncini, F.C. and Groisman, E.A. (2000) A signal transduction system that responds to extracellular iron. Cell, 103, 113–125.
46. Nishino, K., Hsu, F.F., Turk, J., Cromie, M.J., Wosten, M.M. and Groisman, E.A. (2006) Identification of the lipopolysaccharide modifications controlled by the Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III). Mol. Microbiol., 61, 645–654.
47. Perez, J.C. and Groisman, E.A. (2007) Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica. Mol. Microbiol., 63, 283–293.
48. Delgado, M.A., Mouslim, C. and Groisman, E.A. (2006) The PmrA/ PmrB and RcsC/YojN/RcsB systems control expression of the Salmonella O-antigen chain length determinant. Mol. Microbiol., 60, 39–50.