簡易檢索 / 詳目顯示

研究生: 藍婷羭
Lan, Ting-Yu
論文名稱: 針對農業數位分身平台可用性的評估與改進:以稻米種植為例
Evaluation and Improvement of Usability for an Agricultural Digital Twin Platform: A Case Study in Rice Farming
指導教授: 黃能富
Huang, Nen-Fu
口試委員: 石維寬
Shih, Wei-Kuan
陳俊良
Chen, Jiann-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 51
中文關鍵詞: 數位分身人機互動智慧農業使用者中心設計使用者研究
外文關鍵詞: Digital Twin Platform, Human-Computer Interaction (HCI), Smart Agriculture, User-Centered Design, User Research
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今台灣部分農業已經引入智慧農業的概念,透過物聯網感測器、控制器,以及攝影機等,長期追蹤農田的環境數據。透過收集到的數據及影像資料,使用人工智慧模型來分析作物生長狀況、病蟲害影響,以及環境氣候預測,藉此預測出下一步最合適的施作動作。

    然而,雖然現今物聯網感測器及相關設備的佈建已漸趨廣泛,相關的人工智慧模型發展也逐漸成熟,卻沒有一個可以整合所有環境數據及人工智慧模型分析結果的平台,導致農業工作者需要透過與多個團隊合作、使用多個不同的平台,才能查看到所有數據及結果。

    為了解決上述問題,在本篇論文中,綜合了針對農業數位分身平台的需求探索,以及對於平台可用性、有效性,以及用戶滿意度的研究。我們針對台灣水稻農業工作者的需求進行挖掘,讓平台在設計過程中可以納入淺在用戶的需求;並針對測試版本及正式版本分別進行可用性任務測試以及問卷評估。

    在進行完所有測試過後,我們透過可用性問卷的結果,以及測試過程中的觀察及訪談,分析出正式版本存在的可用性問題,並且討論可行的解決方式。最後,根據可用性問題的重要程度,設立短期及長期優化目標。


    In Taiwan, the concept of smart agriculture has been introduced in some practices. By IoT sensors, controllers, and cameras, we can countinuously monitor environmental data in farmlands over a long period. By collecting data and images, AI models are used to analyze crop growth conditions, assess the impact of pests and diseases, and predict climatic changes. This analysis enables the prediction of the most suitable cultivation actions for the next step of crop management.

    However, despite the increasing deployment of IoT sensors and related devices and the maturing development of associated AI models, there is currently no unified platform available to integrate all environmental data and the analysis results. Agricultural practitioners are required to collaborate with multiple teams and use various platforms to access all the data and results.

    In order to solve the above issue, this thesis synthesizes the exploration of requirements for an agricultural digital twin platform, along with research on platform usability, effectiveness, and user satisfaction. We conducted interviews to find the needs of rice farmers in Taiwan, allowing the platform to bring in the explicit requirements of end-users during the design process. Usability testing and questionnaire assessments were conducted for the beta version and alpha version of the platform.

    After completing all the tests, we analyzed the usability issues in the final version based on the results of the usability questionnaire, observations during testing, and interviews. We discussed feasible solutions to these issues and established short-term and long-term optimization goals based on the importance of each usability problem.

    Acknowledgements Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i 摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .1 2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Usability Test . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Usability Questionnaire . . . . . . . . . . . . . . . . . . . 9 2.4 System Usability Scale . . . . . . . . . . . . . . . . . . . 11 2.5 Computer System Usability Questionnaire . . . . . . . . . . 12 2.6 Usability Studies for Smart Agriculture System . . . . . . . 14 3 Platform Introduction . . . . . . . . . . . . . . . . . . . . 16 3.1 Expert Recommendations . . . . . . . . . . . . . . . . . . . 17 3.2 Crop Information . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Environmental Condition . . . . . . . . . . . . . . . . . . 20 4 Experiment and Results . . . . . . . . . . . . . . . . . . . . 22 4.1 Requirement Exploration . . . . . . . . . . . . . . . . . . 22 4.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.2 Interview Design . . . . . . . . . . . . . . . . . . . . . 23 4.1.3 Results from Farmers . . . . . . . . . . . . . . . . . . . 23 4.1.4 Results from Agricultural Enterprise Managers . . . . . . 24 4.2 Beta Version Usability Test . . . . . . . . . . . . . . . . 28 4.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.2 Tasks Design . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.3 Procedures . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . 30 System Usability Scale . . . . . . . . . . . . . . . . . . . . . 30 Usability Problems . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Alpha Version Usability Test . . . . . . . . . . . . . . . . 32 4.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.2 Tasks Design . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.3 Questionnaire Design . . . . . . . . . . . . . . . . . . . 35 4.3.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . 36 Questionnaire Analysis - Task Assessments . . . . . . . . . . . 36 Questionnaire Analysis - System Usability Assessments . . . . . 37 Task Time Analysis . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.6 Usability Problems Compilation . . . . . . . . . . . . . . 40 Overall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Single-Day Crop Information . . . . . . . . . . . . . . . . . . 40 Multiple-Day Crop Information . . . . . . . . . . . . . . . . . 42 Environment Overview . . . . . . . . . . . . . . . . . . . . . . 44 Environmental Data Chart . . . . . . . . . . . . . . . . . . . . 44 Logout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Workflow and Structure Issues . . . . . . . . . . . . . . . . . 46 5 Conclusions and Future Work . . . . . . . . . . . . . . . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    [1] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial internet of things (iiot): An analysis framework,” Computers in Industry, vol. 101, pp. 1–12, 2018.
    [2] A. Gatouillat, Y. Badr, B. Massot, and E. Sejdić, “Internet of medical things: A review of recent contributions dealing with cyber-physical systems in medicine,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3810–3822, 2018.
    [3] U. W. FAO, IFAD and WHO, “The state of food security and nutrition in the world (sofi) report - 2022.” https://www.wfp.org/publications/state-food-security-and-nutrition-world-sofi-report-2022. Online. Last accessed: 10 November 2023.
    [4] Z. Zhai, J. F. Martínez, V. Beltran, and N. L. Martínez, “Decision support systems for agriculture 4.0: Survey and challenges,” Computers and Electronics in Agriculture, vol. 170, p. 105256, 2020.
    [5] Q. Zhang, Precision Agriculture Technology for Crop Farming. London: CRC Press, 2015.
    [6] V. Pallagani, V. Khandelwal, B. Chandra, V. Udutalapally, D. Das, and S. P. Mohanty, “dcrop: A deep-learning based framework for accurate prediction of diseases of crops in smart agriculture,” in 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), pp. 29–33, 2019.
    [7] 食力編輯部, “智慧科技改善稻作缺水困境!台中農改場開發遠端水閥 app 提升灌溉效率.” https://www.foodnext.net/science/technology/paper/5852569048. Online. Last accessed: 10 November 2023.
    [8] 行政院主計總處, “農家概況及農業勞動力.” https://statlearning.moa.gov.tw/aqsys_on/importantArgiGoal_lv2_1_6.html. Online. Last accessed: 10 November 2023.
    [9] 台灣農業部農糧署 and 農委會統計室, “歷年土地面積.” https://statview.coa.gov.tw/aqsys_on/importantArgiGoal_lv3_1_2_1_1.html. Online. Last accessed: 10 November 2023.
    [10] 台灣農業部農糧署, “112 年 5 月有機栽培農戶數及種植面積概況.” https://www.afa.gov.tw/cht/index.php?act=download&ids=27636. Online. Last accessed: 10 November 2023.
    [11] 台灣農業部農糧署稻作產業組, “112 年度稻米產銷契作集團產區一覽表.” https://www.afa.gov.tw/cht/index.php?act=download&ids=29353. Online. Last accessed: 10 November 2023.
    [12] “Ergonomics of human-system interaction —part 11: Usability: Definitions and concepts,” Standard ISO 9241-11:2018, International Organization for Standardization, March 2018.
    [13] J. Nielsen, “Usability 101: Introduction to usability.” https://www.nngroup.com/articles/usability-101-introduction-to-usability/, January 2012. Online. Last accessed: 10 November 2023.
    [14] J. Miller, “Usability testing: A journey, not a destination,” IEEE Internet Computing, vol. 10, pp. 80–83, November 2006.
    [15] S. Kieffer, A. Ghouti, and B. Macq, “The agile ux development lifecycle: Combining formative usability and agile methods,” in Proceedings of the 50th Hawaii International Conference on System Sciences, pp. 577–586, January 2017.
    [16] T. Tullis and B. Albert, “Chapter 3 - planning,” in Measuring the User Experience (Second Edition) (T. Tullis and B. Albert, eds.), Interactive Technologies, pp. 41–62, Boston: Morgan Kaufmann, second ed., July 2013.
    [17] J. Nielsen, “Why you only need to test with 5 users.” https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/, March 2000. Online. Last accessed: 10 November 2023.
    [18] J. Brooke, “SUS: A quick and dirty usability scale,” in Usability Evaluation In Industry (I. L. M. Patrick W. Jordan, B. Thomas and B. Weerdmeester, eds.), pp. 189–194, London: CRC Press, first ed., January 1996.
    [19] J. R. Lewis, “IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use,” International Journal of Human–Computer Interaction, vol. 7, no. 1, pp. 57–78, 1995.
    [20] T. S. Tullis and J. N. Stetson, “A comparison of questionnaires for assessing website usability,” in Professionals Association (UPA) 2004 Conference, June 2004.
    [21] J. R. Lewis and J. Sauro, “Revisiting the factor structure of the system usability scale,” Journal of Usability Studies, vol. 12, p. 183–192, August 2017.
    [22] J. Lewis, “Psychometric evaluation of the post-study system usability questionnaire: The PSSUQ,” in Proceedings of the Human Factors Society 36th Annual Meeting, vol. 2, pp. 1259–1263, January 1992.
    [23] K. Raikar, S. Gawade, and V. Turkar, “Usability improvement with crop disease management as a service,” in 2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE), pp. 577–582, 2017.
    [24] J. Štěpán NovákJ, an Masner, J. Vaněk, P. Šimek, and K. Hennyeyová, “User experience and usability in agriculture–selected aspects for design systems,” AGRIS on-line Papers in Economics and Informatics, Dec 2019.
    [25] H. B. Santoso, R. Delima, and Wahyuni, “Webuse usability testing for farmer and farmer group data collection system,” in 2018 Third International Conference on Informatics and Computing (ICIC), pp. 1–6, 2018.
    [26] Anjami Nayyar in Voices, Economy, India, TOI, “The challenges that india's agriculture domain faces.” https://timesofindia.indiatimes.com/blogs/voices/the-challenges-that-indias-agriculture-domain-faces/. Online. Last accessed: 10 November 2023.
    [27] “The Argicultural Digital Platform.” http://dt.hsnl.tw. Online. Last accessed: 10 November 2023.
    [28] 台灣有機農業資訊網, “如何加入有機認證.” https://epv.afa.gov.tw/Home/ApplyOrganic. Online. Last accessed: 10 November 2023.
    [29] 交通部中央氣象署, “颱風百問.” https://www.cwa.gov.tw/V8/C/K/Encyclopedia/typhoon/typhoon.pdf. Online. Last accessed: 10 November 2023.

    QR CODE