簡易檢索 / 詳目顯示

研究生: 劉宇瑄
Liu, Yu-Hsuan
論文名稱: 利用因果圖優化人機互動研究中的隨機實驗
Leveraging Causal Diagrams for Enhancing Randomized Experiments in Human-Computer Interaction Research
指導教授: 徐茉莉
Shmueli, Galit
口試委員: 郭佩宜
Tafti, Ali
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 服務科學研究所
Institute of Service Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 84
中文關鍵詞: 因果圖隨機實驗人機互動
外文關鍵詞: Causal Diagram, Directed Acyclic Graph
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因果推論在行為科學研究中占有重要地位,常用於回答關於人類、社會和市場行為的因果問題。傳統因果推論方法包括統計學或計量經濟學的研究設計與模型。近年來,Pearl(2000)則引入了因果圖和結構化因果模型作為因果推斷的工具。因果圖以圖像化的方式來直觀地呈現因果關係,使用節點和箭頭來描述研究設計、研究人員心中的因果假設,幫助研究人員得出因果推論。在流行病學和生物醫學研究中,因果圖常被推廣、應用於因果推論研究。此外,因果圖也被推廣於資訊系統(IS)實驗研究,因為在進行數據分析時,它能指引研究員如何正確地控制變數,也幫助解決實驗執行複雜性 (complications) 造成的分析問題或協助進行次群體分析。在人機互動(HCI)領域,研究人員常好奇某個科技物品對人、事、物帶來的因果影響;而為了回答這些因果問題,研究人員常使用「隨機實驗」此研究設計。儘管因果圖能夠幫助因果推論進行,但它尚不常被應用於 HCI 領域的實驗研究中。在本論文中,我們旨在向 HCI 研究人員介紹因果圖和 Tafti & Shmueli(2020)的因果圖應用框架,以便研究人員能夠利用因果圖進行隨機實驗。我們首先簡要介紹因果圖、隨機實驗以及因果圖如何應用於隨機實驗。然後,我們找出 HCI 中最常見的隨機實驗設計;對於三種常見的隨機實驗設計,我們展示了如何將每種研究設計轉化為因果圖,以及這些因果圖如何幫助研究人員進行實驗並得出因果推論。我們也將展示因果圖如何協助處理實驗複雜性造成的分析難題,並從收回來的資料去找出還有哪些可進行推測的因果關係。最後,我們討論了關於因果圖的限制。


    Causal inference holds a prominent position in behavioral sciences research, where it is used to answer causal questions about behaviors of humans, societies, and markets. Traditional methods for causal inference include statistical and econometric study designs and models. More recently, Pearl (2000) introduced causal diagrams and structural causal modeling as a useful tool for causal inference. A causal diagram is a graphical depiction of causal relationships, using nodes and arrows to visually represent research designs and assumptions about causal relationships, thereby aiding researchers in drawing causal inferences. Causal diagrams have been widely promoted and utilized in epidemiology and biomedical research to aid causal inference. Additionally, they have been promoted for information system (IS) experimental studies because they instruct the correct way of conditioning on variables during data analysis, helping to address complications or perform subgroup analyses. In the field of Human-Computer Interaction (HCI), researchers aim to understand the causal effect of an artifact on an outcome of interest. To address such causal questions, randomized experiments are a popular research design choice. Despite the many benefits of causal diagrams for causal inference, their application in guiding causal inference and conducting experiments in the HCI field has been limited. In this thesis, we aim to introduce causal diagrams to HCI researchers and the framework by Tafti & Shmueli (2020) so researchers can benefit from using causal diagrams in conducting randomized experiments. We start by providing a brief introduction to causal diagrams, randomized experiments, and how causal diagrams can be used in randomized experiments. We then identify the most common experimental designs in HCI. For three prominent study designs, we demonstrate how each study design can be translated into a causal diagram, and how the resulting causal diagrams can be used by researchers to help them conduct experiments and make causal inferences. We demonstrate how causal diagrams can be useful for representing and dealing with experimental complications, identifying further causal effects beyond the main effect of interest. We also show some limitations of causal diagrams.

    Chapter 1: Introduction --- 12 Chapter 2: Literature Review --- 15 Chapter 3: Common Randomized Experimental Study Designs in HCI --- 29 Chapter 4: Creating Causal Diagrams for Major HCI Study Designs --- 40 Chapter 5: Basic Randomized Design Comparing One Treatment to Control (Design #1) --- 42 Chapter 6: Randomized Design Comparing Multiple Treatments and a Control with Pretest (Design #2) --- 50 Chapter 7: Within-subject Design with Randomized Treatment Order or Crossover Design (Design #3) --- 61 Chapter 8 Conclusion and Future Directions --- 72 References --- 76

    1. Angrist, J. D., & Pischke, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton University Press. https://doi.org/10.2307/j.ctvcm4j72
    2. Antle, A. N., McLaren, E.-S., Fiedler, H., & Johnson, N. (2019). Evaluating the Impact of a Mobile Neurofeedback App for Young Children at School and Home. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–13. https://doi.org/10.1145/3290605.3300266
    3. Avrahami, D., Williams, K., Lee, M. L., Tokunaga, N., Tjahjadi, Y., & Marlow, J. (2020). Celebrating Everyday Success: Improving Engagement and Motivation using a System for Recording Daily Highlights. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–13. https://doi.org/10.1145/3313831.3376369
    4. Bareinboim, E., & Pearl, J. (2016). Causal inference and the data-fusion problem. Proceedings of the National Academy of Sciences, 113(27), 7345–7352. https://doi.org/10.1073/pnas.1510507113
    5. Bentvelzen, M., Dominiak, J., Niess, J., Henraat, F., & Woźniak, P. W. (2023). How Instructional Data Physicalisation Fosters Reflection in Personal Informatics. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3544548.3581198
    6. Beres, N. A., Frommel, J., Reid, E., Mandryk, R. L., & Klarkowski, M. (2021). Don’t You Know That You’re Toxic: Normalization of Toxicity in Online Gaming. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3411764.3445157
    7. Blank, C., Zaman, S., Wesley, A., Tsiamyrtzis, P., Da Cunha Silva, D. R., Gutierrez-Osuna, R., Mark, G., & Pavlidis, I. (2020). Emotional Footprints of Email Interruptions. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–12. https://doi.org/10.1145/3313831.3376282
    8. Ceha, J., Lee, K. J., Nilsen, E., Goh, J., & Law, E. (2021). Can a Humorous Conversational Agent Enhance Learning Experience and Outcomes? Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3411764.3445068
    9. Chiossi, F., Haliburton, L., Ou, C., Butz, A. M., & Schmidt, A. (2023). Short-Form Videos Degrade Our Capacity to Retain Intentions: Effect of Context Switching On Prospective Memory. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3544548.3580778
    10. Cronin, S., Freeman, E., & Doherty, G. (2022). Investigating Clutching Interactions for Touchless Medical Imaging Systems. CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3491102.3517512
    11. Daskalova, N., Yoon, J., Wang, Y., Araujo, C., Beltran, G., Nugent, N., McGeary, J., Williams, J. J., & Huang, J. (2020). SleepBandits: Guided Flexible Self-Experiments for Sleep. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–13. https://doi.org/10.1145/3313831.3376584
    12. Dillahunt, T. R., Simioni, S., & Xu, X. (2019). Online Grocery Delivery Services: An Opportunity to Address Food Disparities in Transportation-scarce Areas. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3290605.3300879
    13. Dooley, S., Turjeman, D., Dickerson, J. P., & Redmiles, E. M. (2022). Field Evidence of the Effects of Privacy, Data Transparency, and Pro-social Appeals on COVID-19 App Attractiveness. CHI Conference on Human Factors in Computing Systems, 1–21. https://doi.org/10.1145/3491102.3501869
    14. Farrall, A., Taylor, J., Ainsworth, B., & Alexander, J. (2023). Manifesting Breath: Empirical Evidence for the Integration of Shape-changing Biofeedback-based Artefacts within Digital Mental Health Interventions. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3544548.3581188
    15. Forcina, A. (2006). Causal effects in the presence of non compliance: A latent variable interpretation. Metron, 64, 275–301.
    16. Haliburton, L., Bartłomiejczyk, N., Schmidt, A., Woźniak, P. W., & Niess, J. (2023). The Walking Talking Stick: Understanding Automated Note-Taking in Walking Meetings. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–16. https://doi.org/10.1145/3544548.3580986
    17. Hamid, A., Arshad, R., & Shahid, S. (2022). What are you thinking?: Using CBT and Storytelling to Improve Mental Health Among College Students. CHI Conference on Human Factors in Computing Systems, 1–16. https://doi.org/10.1145/3491102.3517603
    18. Hauser, S., Suto, M. J., Holsti, L., Ranger, M., & MacLean, K. E. (2020). Designing and Evaluating Calmer, a Device for Simulating Maternal Skin-to-Skin Holding for Premature Infants. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3313831.3376539
    19. Heuer, H., & Glassman, E. L. (2022). A Comparative Evaluation of Interventions Against Misinformation: Augmenting the WHO Checklist. CHI Conference on Human Factors in Computing Systems, 1–21. https://doi.org/10.1145/3491102.3517717
    20. Imbens, G. W., & Rubin, D. B. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge University Press.
    21. Johannes Dechant, M., Frommel, J., & Mandryk, R. (2021). Assessing Social Anxiety Through Digital Biomarkers Embedded in a Gaming Task. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3411764.3445238
    22. Kim, T., Kim, H., Lee, H. Y., Goh, H., Abdigapporov, S., Jeong, M., Cho, H., Han, K., Noh, Y., Lee, S.-J., & Hong, H. (2022). Prediction for Retrospection: Integrating Algorithmic Stress Prediction into Personal Informatics Systems for College Students’ Mental Health. CHI Conference on Human Factors in Computing Systems, 1–20. https://doi.org/10.1145/3491102.3517701
    23. Kleinberger, R., Van Troyer, A. O., & Wang, Q. J. (2023). Auditory Seasoning Filters: Altering Food Perception via Augmented Sonic Feedback of Chewing Sounds. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3544548.3580755
    24. Lazar, J., Feng, J. H., & Hochheiser, H. (2017). Research Methods in Human-Computer Interaction. Morgan Kaufmann.
    25. Liu, P., Stepanova, E. R., Kitson, A., Schiphorst, T., & Riecke, B. E. (2022). Virtual Transcendent Dream: Empowering People through Embodied Flying in Virtual Reality. CHI Conference on Human Factors in Computing Systems, 1–18. https://doi.org/10.1145/3491102.3517677
    26. Lyngs, U., Lukoff, K., Slovak, P., Seymour, W., Webb, H., Jirotka, M., Zhao, J., Van Kleek, M., & Shadbolt, N. (2020). “I Just Want to Hack Myself to Not Get Distracted”: Evaluating Design Interventions for Self-Control on Facebook. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3313831.3376672
    27. M. DiCosola Iii, B., & Neff, G. (2022). Nudging Behavior Change: Using In-Group and Out-Group Social Comparisons to Encourage Healthier Choices. CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3491102.3502088
    28. Markant, D., Rogha, M., Karduni, A., Wesslen, R., & Dou, W. (2023). When do data visualizations persuade? The impact of prior attitudes on learning about correlations from scatterplot visualizations. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–16. https://doi.org/10.1145/3544548.3581330
    29. Martin, D. W. (2008). Doing psychology experiments (7th ed.). Thomson/Wadsworth.
    30. Mithas, S., Chen, Y., Lin, Y., & De Oliveira Silveira, A. (2022). On the causality and plausibility of treatment effects in operations management research. Production and Operations Management, 31(12), 4558–4571. https://doi.org/10.1111/poms.13863
    31. Morgan, S. L., & Winship, C. (2014). Counterfactuals and Causal Inference: Methods and Principles for Social Research (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781107587991
    32. Olson, J. S., & Kellogg, W. A. (Eds.). (2014). Ways of Knowing in HCI. Springer New York. https://doi.org/10.1007/978-1-4939-0378-8
    33. Park, J., Lee, H., Park, S., Chung, K.-M., & Lee, U. (2021). GoldenTime: Exploring System-Driven Timeboxing and Micro-Financial Incentives for Self-Regulated Phone Use. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–17. https://doi.org/10.1145/3411764.3445489
    34. Pearl, J. (2000). Causality: Models, Reasoning and Inference. Cambridge University Press.
    35. Pearl, J. (2009). Causality (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511803161
    36. Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal Inference in Statistics: A Primer. John Wiley & Sons.
    37. Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. Basic books.
    38. Peng, Z., Guo, Q., Tsang, K. W., & Ma, X. (2020). Exploring the Effects of Technological Writing Assistance for Support Providers in Online Mental Health Community. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3313831.3376695
    39. Pieritz, S., Khwaja, M., Faisal, A. A., & Matic, A. (2021). Personalised Recommendations in Mental Health Apps: The Impact of Autonomy and Data Sharing. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–12. https://doi.org/10.1145/3411764.3445523
    40. Press, V. S., & Erel, H. (2023). Humorous Robotic Behavior as a New Approach to Mitigating Social Awkwardness. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–16. https://doi.org/10.1145/3544548.3580821
    41. Purohit, A. K., Bergram, K., Barclay, L., Bezençon, V., & Holzer, A. (2023). Starving the Newsfeed for Social Media Detox: Effects of Strict and Self-regulated Facebook Newsfeed Diets. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–16. https://doi.org/10.1145/3544548.3581187
    42. Reinhardt, D., & Hurtienne, J. (2019). Only one item left?: Heuristic Information Trumps Calorie Count When Supporting Healthy Snacking Under Low Self-Control. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–10. https://doi.org/10.1145/3290605.3300708
    43. Reza, M., Zavaleta Bernuy, A., Liu, E., Li, T., Liang, Z., Barber, C. K., & Williams, J. J. (2023). Exam Eustress: Designing Brief Online Interventions for Helping Students Identify Positive Aspects of Stress. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–13. https://doi.org/10.1145/3544548.3581368
    44. Robinson, R. B., Reid, E., Fey, J. C., Depping, A. E., Isbister, K., & Mandryk, R. L. (2020). Designing and Evaluating “In the Same Boat”, A Game of Embodied Synchronization for Enhancing Social Play. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3313831.3376433
    45. Sallam, S., Sakamoto, Y., Leboe-McGowan, J., Latulipe, C., & Irani, P. (2022). Towards Design Guidelines for Effective Health-Related Data Videos: An Empirical Investigation of Affect, Personality, and Video Content. CHI Conference on Human Factors in Computing Systems, 1–22. https://doi.org/10.1145/3491102.3517727
    46. Sehrt, J., Wißmann, T., Breitenbach, J., & Schwind, V. (2023). The Effects of Body Location and Biosignal Feedback Modality on Performance and Workload Using Electromyography in Virtual Reality. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–16. https://doi.org/10.1145/3544548.3580738
    47. Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Houghton, Mifflin and Company.
    48. Sharp, H., Preece, J., & Rogers, Y. (2019). Interaction Design: Beyond Human-Computer Interaction (5th ed.). John Wiley & Sons.
    49. Shrier, I., & Platt, R. W. (2008). Reducing bias through directed acyclic graphs. BMC Medical Research Methodology, 8(1), 70. https://doi.org/10.1186/1471-2288-8-70
    50. Sun, Y., Drivas, M., Liao, M., & Sundar, S. S. (2023). When Recommender Systems Snoop into Social Media, Users Trust them Less for Health Advice. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3544548.3581123
    51. Suttorp, M. M., Siegerink, B., Jager, K. J., Zoccali, C., & Dekker, F. W. (2015). Graphical presentation of confounding in directed acyclic graphs. Nephrology Dialysis Transplantation, 30(9), 1418–1423. https://doi.org/10.1093/ndt/gfu325
    52. Tafti, A., & Shmueli, G. (2020). Beyond Overall Treatment Effects: Leveraging Covariates in Randomized Experiments Guided by Causal Structure. Information Systems Research, 31(4), 1183–1199. https://doi.org/10.1287/isre.2020.0938
    53. Tennant, P. W. G., Murray, E. J., Arnold, K. F., Berrie, L., Fox, M. P., Gadd, S. C., Harrison, W. J., Keeble, C., Ranker, L. R., Textor, J., Tomova, G. D., Gilthorpe, M. S., & Ellison, G. T. H. (2021). Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: Review and recommendations. International Journal of Epidemiology, 50(2), 620–632. https://doi.org/10.1093/ije/dyaa213
    54. Textor, J., Van Der Zander, B., Gilthorpe, M. S., Liśkiewicz, M., & Ellison, G. T. H. (2016). Robust causal inference using directed acyclic graphs: The R package ‘dagitty.’ International Journal of Epidemiology, 1887–1894. https://doi.org/10.1093/ije/dyw341
    55. Tsai, C.-H., You, Y., Gui, X., Kou, Y., & Carroll, J. M. (2021). Exploring and Promoting Diagnostic Transparency and Explainability in Online Symptom Checkers. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–17. https://doi.org/10.1145/3411764.3445101
    56. Tseng, V. W.-S., Lee, M. L., Denoue, L., & Avrahami, D. (2019). Overcoming Distractions during Transitions from Break to Work using a Conversational Website-Blocking System. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–13. https://doi.org/10.1145/3290605.3300697
    57. Uhde, A., Schlicker, N., Wallach, D. P., & Hassenzahl, M. (2020). Fairness and Decision-making in Collaborative Shift Scheduling Systems. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–13. https://doi.org/10.1145/3313831.3376656
    58. Wu, K., Petersen, E., Ahmad, T., Burlinson, D., Tanis, S., & Szafir, D. A. (2021). Understanding Data Accessibility for People with Intellectual and Developmental Disabilities. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–16. https://doi.org/10.1145/3411764.3445743
    59. Yan, Z., Lin, Y., Wang, G., Cai, Y., Cao, P., Mi, H., & Zhang, Y. (2023). LaserShoes: Low-Cost Ground Surface Detection Using Laser Speckle Imaging. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–20. https://doi.org/10.1145/3544548.3581344
    60. Zakaria, C., Foong, P. S., Lim, C. S., V. S. Pakianathan, P., Koh, G. H. C., & Perrault, S. T. (2022). Does Mode of Digital Contact Tracing Affect User Willingness to Share Information? A Quantitative Study. CHI Conference on Human Factors in Computing Systems, 1–18. https://doi.org/10.1145/3491102.3517595
    61. Zhang, A. W., Lin, T.-H., Zhao, X., & Sebo, S. (2023). Ice-Breaking Technology: Robots and Computers Can Foster Meaningful Connections between Strangers through In-Person Conversations. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3544548.3581135
    62. Zhong, S., Lalanne, D., & Alavi, H. (2021). The Complexity of Indoor Air Quality Forecasting and the Simplicity of Interacting with It – A Case Study of 1007 Office Meetings. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–19. https://doi.org/10.1145/3411764.3445524
    63. Zuckerman, O., Walker, D., Grishko, A., Moran, T., Levy, C., Lisak, B., Wald, I. Y., & Erel, H. (2020). Companionship Is Not a Function: The Effect of a Novel Robotic Object on Healthy Older Adults’ Feelings of “Being-Seen.” Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3313831.3376411

    QR CODE