研究生: |
蕭仲評 Hsiao, Chung-Ping |
---|---|
論文名稱: |
Application of Tensor Network State Method to 1D Quantum Systems 張量網路態方法在一維量子系統上的應用 |
指導教授: |
陳柏中
Chen, Pochung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 張量網路態方法 |
外文關鍵詞: | MERA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, we use the new numerical method multiscale entanglement
renormalization ansatz (MERA) to study the one dimensional spin system. This
method, MERA, utilizes a network of tensors to represent quantum many-body
systems on a lattice. Other examples of tensor network state are matrix product
states (MPSs) for 1D systems, tree tensor networks (TTNs) for systems with a
tree shape, and projected entangled-pair states (PEPSs) for 2D systems and be-
yond. The three structures dier in the graph that denes how the tensors are
interconnected into a network: The graphs for MPSs, TTNs, and 2D PEPSs are,
respectively, a chain, a tree, and a 2D lattice. Importantly, from these tensor
networks the expectation value of local observables can be computed eciently.
Developing algorithms to simulate quantum many-body systems is important
for understanding and studying the physical principles. And these may become
powerful tools for the analysis of quantum computation and quantum information
theory. But in general ecient simulation is dicult, due to the fundamental
quantum physical laws.
The main method we have studied and worked on is multiscale entangle-
ment renormalization ansatz (MERA) which is a variational ansatz for many-
body states. MERA is a tree tensor network for 1D, 2D systems and beyond.
We have developed code of ternary-MERA to compute the ground state energy,
expected values of local observables, and correlators for 1D lattice systems. In
a nutshell, MERA is an algorithm for entanglement renormalization which is a
numerical technique based on locally reorganizing the Hilbert space of a quantum
many-body system with the aim to reduce the amount of entanglement in its wave
function. We use this method to study 1D Ising model, XXZ model, and J1 - J2
model, and then comparing the numerical results with exact diagonalization (ED)
and density matrix renormalization group (DMRG).
[1] G. Evenbly and G. Vidal, Phys. Rev. B 79, 144108 (2009).
[2] P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009).
[3] G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).
[4] E. Schmidt, Math. Ann. 63, 433 (1906); A. Kkert and P. L. Knight, Am.
63, J. Phys. 415 (1995); A. Peres, Quantum Theory: Concepts and Mathods
(Kluwer Academic Publishers, Dordrecht, 1995).
[5] M. Aguado, and G. Vidal, Phys. Rev. Lett. 100, 070404 (2008)
[6] G. Vidal, Phys. Rev. Lett. 101, 110501 (2008)
[7] G. Vidal, arXiv: 0912.1651 (2009).
[8] Y.-Y. Shi, L.-M. Duan, and G. Vidal, Phys. Rev. A 74, 022320 (2006).
[9] O. Buerschaper, M. Aguado, and G. Vidal, Phys. Rev. B 79, 085119 (2009)
[10] Ian P McCulloch, J. Stat. Mech. (2007) P10014
[11] J. I. Latorre, C. A. Lutken, E. Rico and G. Vidal, Phys. Rev. A 71, 034301
(2005)
[12] L. Tagliacozzo, G. Evenbly and G. Vidal, Phys. Rev. B 80, 235127 (2009)
[13] Robert N. C. Pfeifer, Glen Evenbly, and G. Vidal, Phys. Rev. A 79, 040301(R)
(2009).
[14] G. Evenbly, P. Corboz, and G. Vidal, arXiv: 0912.2166 (2009)
[15] E. Lieb, T. Schultz and D. Mattis, Ann. Phys. 16, 407 (1961)
[16] Pierre Pfeuty, The One-Dimensional Ising Model with a Transverse Field,
Ann. Phys. 57, 79 (1970)
[17] S. R. White and I. Aeck , Phys. Rev. B 54, 9862 (1996).
[18] E. Dagotto and A. Moreo, Phys. Rev. B 38, 5087(R) (1988).
[19] G. Evenbly and G. Vidal, Phys. Rev. Letter 102, 180406 (2009).
[20] G. Evenbly, R. N. C. Pfeifer, V. Pico, S. Iblisdir, L. Tagliacozzo, I. P. McCul-
loch and G. Vidal, arXiv: 0912.1642 (2009)
[21] NVIDIA Corporation, NVIDIA CUDATM Programming Guide Version 2.3
(2009)