研究生: |
楊綠淵 |
---|---|
論文名稱: |
以文件相關性為基礎之企業知識分群與管理模式 A Knowledge Clustering and Service Model Based on Document Similarity Analysis |
指導教授: | 侯建良 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 152 |
中文關鍵詞: | 相關性分析 、文件分群 、資訊發佈 |
外文關鍵詞: | Similarity Analysis, Document Clustering, Information Publication |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網際網路(Internet)之快速發展,「資訊過量」、「資訊爆炸」等狀況漸形嚴重,造成網際網路使用者進行資訊檢索/查詢時,無法有效篩選真正想要尋找之資訊。此外,近年來以顧客為導向之顧客關係管理(Customer Relationship Management,CRM)觀念盛行,企業若能掌握使用者之需求,建立「個人化(Personalized)」之顧客關係,主動發佈使用者需要之資訊,將可更契合未來資訊之管理模式。本論文乃以文件關鍵屬性之擷取為基礎,進行文件間之相關性分析;並以此相關性分析之結果進行自動化文件分群。之後,透過使用者閱讀趨勢之收集與分析,結合文件分群結果,自動推論文件接受對象,達成文件(或訊息)自動發佈之目的。最後,建立一套以文件相關性為基礎之企業知識分群與管理模式與系統技術,並以一案例驗證此模式與技術之可行性。整體而言,藉由本研究所發展之知識文件管理模式,除可促成企業體實現一對一行銷之理念外,尚可應用於企業知識文件管理體系,協助企業組織發展智慧型知識文件管理機制,使電子化知識管理與顧客關係管理理念能相互整合支援,並帶動知識服務型產業之發展。
Owing to the drastic development of the Internet technology, the problems of information overload is more and more serious. Under such circumstance, the Internet users cannot efficiently and effectively retrieve the information that meets their requirements over the Internet. Recently, in the customer centric market, customer relationship management (CRM) has become a critical issue for business operation. To obtain long-term relationship with the customers, the enterprises have to capture the customer demands, to establish a personalized relationship with customer and to intelligently provide information/document based on user requirements.
In order to explore a knowledge clustering and service model for the organizations to efficiently manage the domain documents, three algorithms namely document similarity analysis (DSA), document clustering algorithm (DCA), and document publication algorithm (DPA) are proposed in this research. The document similarity analysis is developed based on the key attributes of documents (including the document keywords, providers and categories) while the document clustering methodology is proposed by application of document similarity and the K-means approach. In addition, according to the browse history of users and document clusters, a publication algorithm of documents is utilized to automatically provide the documents to the target users. A web-based prototype system of the knowledge clustering and service model will also be implemented to ensure the applicability of the model. Effectiveness of the model is also by a demonstration case. As a whole, the knowledge management model proposed in this research can assist the organizations to intelligently and efficiently manage the documents and to realize the objective of one-to-one marketing.
1.卜小蝶,2001,「以圖書借閱記錄探勘加強圖書資源利用之探討」,中國圖書館學會會報,Vol. 66,第59-72頁。
2.卜小蝶,2002,「以使用記錄分析探索網路使用者檢索興趣之研究」,碩士論文(指導教授:楊千),交通大學資訊管理學系。
3.何昶毅,2001,「以網頁探勘技術提供一對一個人化服務」,碩士論文(指導教授:王本正),東海大學企業管理學系。
4.林信志等,2002,「長榮管理學院網頁瀏覽行為之分類探勘」,長榮學報,Vol. 6:1,第1-16頁。
5.林俊佑,李青松,曾廣華,2002,「基於文件分類技術之資訊追蹤系統」,電腦與通訊,第99期,第133-144頁。
6.林珊如,2002,「網路使用者特性與資訊行為研究趨勢之探討」,圖書資訊學刊,Vol. 17,第35-47頁。
7.孫銘聰、侯建良,2002,「以推論法則為基之知識文件權限管理程序模式」,產業電子化運籌管理學術暨實務研討會,長庚大學,九十一年六月二十八日,Paper ID:39.
8.侯永昌、楊雪花,1998,「以模糊理論和遺傳演算法為基礎的中文文件自動分類之研究」,模糊系統學刊,第4卷,第1期,第45-57頁。
9.曹乃龍,2000,「模糊自動文件分類在網際網路上的探討」,博士論文(指導教授:林丕靜),淡江大學資訊工程學系。
10.張玉華,2003,「從檔案整理原則談國家檔案之分類」,檔案季刊,第2卷,第一期,第44-56頁。
11.陳鈺瑾,1999,「可調式之中文文件自動摘要」,碩士論文(指導教授:張俊盛),清華大學資訊工程學系。
12.陳振東、戴偉勝,2002,「網際網路環境中個人化資訊推薦系統實作之研究」,資訊管理學報:中華民國資訊管理學會會報,Vol. 9:1,第21-38頁。
13.陳佳鴻,2001,「發展基於使用者行為導向之智慧型財經資訊系統」,碩士論文(指導教授:陳安斌),交通大學資訊管理學系。
14.許中川、陳景揆,2001,「探勘中文新聞文件」,中華民國資訊管理學會會報,Vol. 14:2,第103-122頁。
15.許銀雄、周世俊,2002,「利用資料探勘技術改進網站人機界面」,電腦學刊,Vol. 7:2,第1-15頁。
16.國家圖書館編目園地全球資訊網,http://datas.ncl.edu.tw/catweb/sect-2.htm
17.曾元顯,1997,「關鍵詞自動擷取技術之探討」,中國圖書館學會會訊,第106期,第26-29頁。
18.曾元顯,2002,「文件主題自動分類成效因素探討」,中國圖書館學會會報,第68期,第62-83頁。
19.詹智凱,2000,「以詞的關聯性為基礎的文件自動分類」,碩士論文,(指導教授:徐俊傑),國立台灣科技大學資訊管理學系。
20.楊允言,1999,「中文文件自動分類之探討」,大漢學報,第13期,第241-256頁。
21.楊傑勝,2000,「適應性聚類演算法及其應用」,碩士論文,(指導教授:蔣榮先),成功大學資訊工程學系。
22.蔡聰洲,2001,「整合資料倉儲與資料探勘於網站瀏覽分析」,碩士論文(指導教授:劉敦仁),交通大學資訊管理學系。
23.顏秀珍、李御璽、何仁傑,2001,「利用資料探勘語言挖掘感興趣的資訊」,電腦學刊,Vol. 9:1,第44-60頁。
24.顏嘉惠,2002,「資料探勘於圖書館行銷及顧客關係管理之應用」,圖書與資訊學刊,Vol. 42,第58-68頁。
25.顧皓光,莊裕澤,1998,「網路文件自動分類」,臺大管理論叢,第9卷,第1期,第201-242頁。
26.Abe, K., Taketa, T. and Nunokawa, H., 2000, “An idea of the agent-based information recommending system using the statistical information,” The Seventh International Conference on Parallel and Distributed Systems: Workshops, pp. 143-146.
27.Aggarwal, C.C. and Yu, P.S., H., 2001, “On effective conceptual indexing and similarity search in text data,” Proceedings, IEEE International Conference on Data Mining, pp. 3-10.
28.Carrere, J., Cholvy, L., Cuppens, F. and Saurel, C., 1998, "Merging security policies: analysis of practical example," Proceedings, The 11th IEEE on Computer Security Foundations Workshop, pp. 123-136.
29.Cooley, B., Mobasher, B., and Srivastava J., 1997, "Web mining: information and pattern discovery on the World Wide Web," Proceedings of the 1997 International Conference on Tools with Artificial Intelligence, Vol. 3-8, pp. 558-567.
30.Cooper, J.W., Coden, A.R. and Brown, E.W., 2002, " A novel method for detecting similar documents," Proceedings of the 35th Annual Hawaii International Conference on System Sciences, pp. 1153- 1159.
31.Dridi, F. and Neumann, G.., 1998, "Towards access control for logical document structure," Proceedings, The Ninth International Workshop on Database and Expert Systems Applications, pp. 322-327.
32.Feldella, E. and Prandini, M., 2000, "A novel approach to on-line status authentication of public-key certificates," The 16th Annual Conference on Computer Security Applications, pp. 270-277.
33.Freeman, R., Yin, H. and Allinson, N.M., 2002, “Self-organising maps for tree view based hierarchical document clustering,” Proceedings of the 2002 International Joint Conference on Neural Networks, Vol. 2, pp. 1906-1911.
34.Fu, W., Wu, B., He, Q. and Shi, Z., 2001, “Text document clustering and the space of concept on text document automatically generated,” Proceedings, International Conferences on Info-tech and Info-net, Vol. 3, pp. 107-112.
35.Furuse, K., Miura, T., Ishikawa, M., Chen, H. and Ohbo, N., 2001, “Applying the branch and bound technique to document similarity search,” Processing, IEEE Pacific Rim Conference on Communications, Computers and signal, Vol. 1, pp. 331-336.
36.Hammouda, K. M. and Kamel, M. S., 2002, “Phrase-based document similarity based on an index graph model,” Proceeding, IEEE International Conference on Data Mining, pp. 203-210.
37.Haruechaivasak, C., Shyu, M.-L. and Chen S.-C., 2002, "Web document classification based on fuzzy association," Proceedings, The 26th Annual International On Computer Software and Applications Conference, pp487-492.
38.Her, J.-H., Jun, S.-H., Choi, J.-H. and Lee J.-H., 1999, “A Bayesian neural network model for dynamic web document clustering,” Proceedings of the IEEE Region 10 Conference, Vol. 2, pp. 1415-1418.
39.Khan, I., Blight, D., McLeod, R. D. and Card, H. C., 1997, “Categorizing Web documents using competitive learning: an ingredient of a personal adaptive agent,” International Conference on Neural Networks, Vol. 1, pp. 96-99.
40.Kim, J.-G. and Lee, E.-S., 1999, “Intelligent information recommend system on the Internet,” Proceedings, International Workshops on Parallel Processing, Man and Cybernetics, pp. 376-380.
41.Kobayashi, K., Sumi, Y. and Mase, K., 1998, “Information presentation based on individual user interests,” Proceedings, Second International Conference on Knowledge-Based Intelligent Electronic Systems, Vol. 1, pp. 375-383.
42.Kondadadi, R. and Kozma, R., 2002, “A modified fuzzy ART for soft document clustering,” Proceedings of the International Joint Conference on Neural Networks p, Vol. 3, pp. 2545-2549.
43.Kovics, L. and Baranyi, P., 2002, “Document clustering based on concept lattice,” IEEE International Conference on Systems, Man and Cybernetics, Vol. 7, pp. 241-246.
44.Lancieri, L., 1999, “Description of Internet user behavior,” International Joint Conference on the Neural Networks, Vol. 4, pp. 2514-2519.
45.Lin, C.-H. and McLeod, D., 2000, “Temperament-based information filtering: a human factors approach to information recommendation,” IEEE International Conference on Multimedia and Expo, Vol. 2, pp. 941-944.
46.Lin, K.-I. and Kondadadi, R., 2001, “A similarity-based soft clustering algorithm for documents,” Proceedings, Seventh International Conference on Database Systems for Advanced Applications, pp. 40-47.
47.Lin, S.-H., Chen, M. C., Ho, J. M. and Huang Y.-M., 2002, "ACIRD:intelligent Internet document organization and retrieval," IEEE Transactions on Knowledge and Data Engineering, Vol. 14, pp. 599-614.
48.Lu, H., Lu, Z. and Li, Y., 2001, “TRUST!-A distributed multi-agent system for community formation and information recommendation,” IEEE International Conference on Systems, Man, and Cybernetics, Vol. 3, pp. 1734-1739.
49.Michael J. A. Berry, Gordon S. Linoff, 2001, Data Mining, 維科圖書有限公司。
50.Motta, C.L.R. and Borges, M.R.S., 2000, “A cooperative approach for information recommendation and filtering,” Proceedings, The Sixth International Workshop on Groupware, pp. 42-49.
51.Navathe, S. B. and Yong, C. O., 1998, "Avoiding inference problem using page level security classification," Proceedings, The Ninth International Workshop on Database and Expert Systems Applications, pp. 294-299.
52.Ng, Y.-K., Tang, J., and Goodrich, M., 2001, "A binary-categorization approach for classifying multiple-record Web documents using application ontologies and a probabilistic model," Proceedings, Seventh International Conference on Database Systems for Advanced Applications, pp. 58-65.
53.Pagnia, H., Theel, O. and Schupp, H., 2000, “Transparent management of replicated WWW document clusters,” Seventh International Conference on Parallel and Distributed Systems, pp. 263-268.
54.Peltonen, J., Sinkkonen, J. and Kaski, S., 2002, “Discriminative clustering of text documents,” Proceedings of the 9th International Conference on Neural Information, Vol. 4, pp. 1956-1960.
55.Shyu, M.-L., Chen, S.-C. and Shu, C.-M., 2000, “Affinity-based probabilistic reasoning and document clustering on the WWW,” The 24th Annual International Computer Software and Applications Conference, pp. 149-154.
56.Silva, J., Mexia, J., Coelho, A. and Lopes, G., 2001, “Document clustering and cluster topic extraction in multilingual corpora,” Proceedings IEEE International Conference on Data Mining, pp. 513-520.
57.Shibata, H., Hoshiai, T. and Kubota, M., 2000, “A study on personalized information recommending agents,” Proceeding, International Workshop on Autonomous Decentralized Systems, pp. 28-33.
58.Su, Z., Yang, Q., Zhang, H., Xu, X. and Hu, Y., 2001, “Correlation-based document clustering using web logs,” Proceedings of the 34th Annual Hawaii International Conference on System Sciences, pp. 1831-1837.
59.Tan, A.-H., Teo, C., 1998, “Learning user profiles for personalized information dissemination,” Proceedings, IEEE International Joint Conference on Neural Networks, Vol. 1, pp. 183-188.
60.Tzeras, K. and Petrakis, E.G.M., 1999, “Similarity searching in text databases with multiple field types,” Proceedings, the 15th International Conference on Data Engineering, pp. 100.
61.Wewers, T. and Wargitsch, C., 1998, "Four dimensions of interorganizational, document-oriented workflow: A case study of the approval of hazardous-waste disposal," Proceedings of the Thirty-First Hawaii International Conference on System Sciences, Vol.4, pp. 332-341.
62.Wu, B., Zheng, Y., Liu, S. and Shi, Z., 2002, “CSIM: a document clustering algorithm based on swarm intelligence,” Proceedings of the 2002 Congress on Evolutionary Computation, Vol. 1, pp. 477-482.
63.Xiao, J. and Zhang, Y., 2001, "Clustering of web users using session-based similarity measures," Proceedings of the 2001 International Conference on Computer Networks and Mobile Computing, pp. 223-228.
64.Xiao, J., Zhang, Y., and Tianzhu, 2001, "Measuring similarity of interests for clustering Web-users," Proceedings of the 2001 International Conference on Database, pp. 107-114.
65.Yang, H.-C., Lee, C.-H., 2000, “Automatic category generation for text documents by self-organizing maps,” Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, Vol. 3, pp. 581-586.
66.Yoshida, H., Shida, T. and Kindo, T., 2001, “Asymmetric similarity with modified overlap coefficient among documents,” Processing, IEEE Pacific Rim Conference on Communications, Computers and signal, Vol. 1, pp. 99-102.
67.Yoshioka, T., Takata, Y., Ito, M. and Ishii, S., 2001, “A neural visualization method for WWW document clusters,” Proceedings, International Joint Conference on Neural Networks, Vol. 3, pp. 2270-2275.