簡易檢索 / 詳目顯示

研究生: 陳泓任
Hung-Jen Chen
論文名稱: 鋁系奈米結構之成長、鑑定和應用研究
Aluminum related nanostructures: growth, characterization and applications
指導教授: 林樹均
Su-Jien Lin
徐文光
Wen-Kuang Hsu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 141
中文關鍵詞: 氧化鋁奈米線
外文關鍵詞: Aluminum, Alumina, nanowires
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 加熱高熵合金粉可得新型螺旋型氧化鋁奈米線,且鉻會在氧化鋁奈米線成長的過程中自然溶入,此種奈米線具藍綠光譜且在662 nm處有一小光譜值;奈米線符合場發射曲線且有一低臨界電壓值。CASTEP計算結果顯示單一矽原子取代氧原子並不會影響其物理性質,但取代兩個氧於不同位置、或不同的鋁位置及位於插入位置時都會影響氧化鋁結構的性質;在奈米結構的計算中,氧化鋁奈米結構表面的鋁及氧原子會在價電代邊界與導電帶之間形成許多新能帶,且在能量損失計算中亦會形成許多新的峰值,並且整個曲線向低能量處偏移。當等莫耳鋁和矽粉加熱後可得到四種奈米結構,特別是鋁奈米線最引人注目,而此奈米線也採用不同的方式加以分析。

    本論文共分四部份:1.利用高熵合金系統合成氧化鋁奈米線;2.氧化鋁奈米結構的CASTEP計算;3.在鋁矽系統中合成氧化鋁奈米結構;4. 在鋁矽系統中合成鋁奈米線。


    The novel spiral alumina nanowires are produced via the annealing of HEAs and it is found that Cr is automatically incorporated into the alumina during the nanowire growth. Nanowires exhibit a blue-green light, together with a small emission at 662nm. Nanowires show a well-defined field emission profile and lower threshold field. CASTEP calculations show that single substitution occurs at different O sites will not influence the physical properties, whereas Two-substitution of O site, different Al-substitution by Si and interstitial, will influence physical properties of alumina cell. The Al and O atoms on surface of nanostructure will create many sub-bands between upper valance and conduction band, and peaks are shifted to lower energy in loss function profiles. Equimolar mixture of fine Al and Si powder annealed generates four kinds of nanostructures especially of aluminum nanowires, which are characterized accordingly.

    This thesis consists of four parts, (1) synthesis of alumina nanowires using HEA system; (2) CASTEP calculation of alumina related nanostructres, (3) synthesis of alumina nanostructures in an Al-Si system; (4) synthesis aluminum nanowires in an Al-Si system

    Contents Abstract…………………………………………………………………………I Acknowledgements…………………………………………………………...III Contents………………………………………………………………………..V List of Acronyms and Abbreviations .……………………………………… IX Table List……………………………………………………………………...XI Figure Caption………………………..………………………………………XII Chapter 1: Introduction 1-1 Nano-materials….….……..……………………….…………………..1 1-2 Growth of Nanowires..……....……………………..………....…….....4 1-2-1 Solution-based Approaches to Nanowire Generations................4 1-2-1-1 Template-directed Synthesis of 1D Nanostructures…..4 1-2-1-2 Solution-liquid-solid Method……………………...…..7 1-2-1-3 Solvothermal Chemical Synthesis……………..…….10 1-2-2 Nanowires Growth in Gas Phase………………………...……12 1-2-2-1 Vapor-liquid-solid Nanowire Growth………...……...12 1-2-2-2 Oxide-assisted Nanowire Growth……………………16 1-2-2-3 Vapor-solid Growth………………………………….19 1-3 Types of Aluminum-based Nanowires…………………………….....21 1-3-1 Alumina Nanowires…………………………………………..21 1-3-2 Aluminum Nitride Nanowires………………………………...22 1-3-3 Aluminum Nanowires………………………………………...22 1-4 High-entropy Alloys……………………………………………......25 1-5 Aim of the Thesis…………………………………………………….28 Chapter 2: Experimental Procedures 2-1 Preparation of Powder……………………………………………..…28 2-1-1 HEA System...……………....……………………………...…28 2-1-2 Al-Si System….…………………………………………….....28 2-2 Synthesis of Al-based Nanowires………………………………….....29 2-2-1 HEA System..............................................................................29 2-2-2 Al-Si System..............................................................................30 2-3 Characterization of Al-based Nanowires…………………………......30 2-3-1 Scanning Electron Microscope Observation……………..…...30 2-3-2 Transmission Electron Microscope Observations………....….31 2-3-3 Energy Dispersive X-ray Analysis……………………………31 2-3-4 Electron Field Emission Measurement………………………..31 2-3-5 Cathodoluminescence Measurement………………...…….….32 2-3-6 Electron Energy Loss Spectrometer Analysis………………...33 2-4 Methods of CASTEP Calculation…………………………………….33 Chapter 3: Results and Discussion 3-1 HEA System………………………………………………………….34 3-1-1 Synthesis of Alumina Nanowires in HEA System……………34 3-1-2 Calculation of Alumina Cell in CASTEP……………………..41 3-1-2-1 Bulk cell……………………………………………...41 3-1-2-1-1 Energy Band Gap and Density of State……..44 3-1-2-1-2 Cell Stress…………………………………...54 3-1-2-3 Optical Properties…………..…………………56 3-1-2-1 Nanostructure cell……………………………………70 3-2 Al-Si System.........................................................................................75 3-2-1 Synthesis of Alumina Nanostructures in Al-Si System.............75 3-2-1-1 Alumina Needle-like Nanostructure…………………75 3-2-1-2 Alumina Nanoplates Nanostructure………………….80 3-2-1-3 Alumina Nanowires.....................................................90 3-2-2 Aluminum Nanowires in Al-Si System.....................................97 3-2-2-1 Synthesis Aluminum Nanowires in Al-Si System.......97 3-2-2-2 CASTEP Calculation of Aluminum Cells….……….107 Chapter 4: Summary and Conclusions 4-1 Synthesis of Alumina Nanowires in HEA System………………….114 4-2 Calculation of Alumina Cell in CASTEP…………………………...114 4-3 Synthesis of Alumina Nanostructures in Al-Si System......................115 4-4 Synthesis of Aluminum Nanowires in Al-Si System……………….116 References…………………………………………………………………...118 Appendix A: Basic Principle (Density Functional Theory) in CASTEP A.1 Hohenberg-Kohn Theorem………..………………………………..131 A.2 Local Density Approximation………………………………………134 A.3 Local-spin-density Approximation………………………………...136 Appendix B: Calculation in CASTEP B.1 Density of States and Partial Density of States……………………..137 B.2 Optical Properties…………………………………………………...139

    References
    1. H. S. Nalwa (ed.), Handbook of Nanostructured Materials and Nanotechnology (Academic Press, 2000).
    2. V. M. Shalaev and M. Moskovits (eds.), Nanostructured Materials: Clusters, Composites, and Thin Films (American Chemical Society, Washington, DC, 1997).
    3. A. S. Edelstein and R. C. Cammarata (eds.), Nanomaterials: Synthesis, Properties, and Applications (Institute of Physics, UK, 1996).
    4. M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, “The quantum mechanics of larger semiconductor clusters (“quantum dots”),” Annu. Rev. Phys. Chem. 41, 477 (1990).
    5. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assembiles,” Annu. Rev. Mater. Sci. 30, 545 (2000).
    6. J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. deJongh, “The Signature of Conductance Quantization in Metallic Point Contacts,” Nature 375, 767 (1995).
    7. K. K. Likharev and T. Claeson, “Single electronics“, Sci. Am. 266, 80 (1992).
    8. G. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, “Architectonic Quantum Dot Solids,” Acc. Chem. Res. 32, 415 (1999).
    9. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,“ Science 290, 314 (2000).

    10. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C. M. Lieber, “Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing,” Science 289, 94 (2000).
    11. D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal ,” Nature 389,699 (1997).
    12. S. G. Louie, “Carbon Nanotube-Based Sensors,” Op. Appl. Phys. 80, 113 (2001).
    13. J. Hu and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32, 435 (1999).
    14. E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science 277, 1971 (1997).
    15. X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66 (2001).
    16. Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying, and J. Heremans, “Electronic transport properties of single-crystal bismuth nanowire arrays,” Phys. Rev. B 61, 4850 (2000).
    17. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897 (2001).
    18. P. Rai-choudhury (ed.), Handbook of Microlithography, Micromachining, and Microfabrication (SPIE Press, IEEE, 1999).
    19. Y. Wu and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12, 605 (2000).

    20. M. H. Huang, Y. Wu, H. Feick, E. Webber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. 13, 113 (2000).
    21. A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, 208 (1998).
    22. C. R. Martin, “Nanomaterials: A Membrane-Based Synthetic Approach,” Science 266, 1961 (1994).
    23. W. Han, S. Fan, W. Li, and Y. Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction,” Science 277, 1287 (1997).
    24. T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science 270, 1791 (1995).
    25. X. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 12, 298 (2000).
    26. C. G. Wu and T. Bein, “Conducting Carbon Wires in Ordered, Nanometer-Sized Channels,” Science 266, 1013 (1994).
    27. Huczko, “Template-based synthesis of nanomaterials,” Appl. Phys. A-Mater. 70, 365 (2000).
    28. K.-B. Lee, S.-M. Lee, J. Cheon, “Size-Controlled Synthesis of Pd Nanowires Using a Mesoporous Silica Template via Chemical Vapor Infiltration,” Adv. Mater. 13, 517 (2001).
    29. R. Ulrich, A. Du Chesne, M. Templin, and U. Wiesner, “Nano-objects with Controlled Shape, Size, and Composition from Block Copolymer Mesophases,” Adv. Mater. 11, 141 (1999).

    30. Z. Liu, Y. Sakamoto, T. Ohsuna, K. Hiraga, O. Terasaki, C. H. Ko, H. J. Shin, and R. Ryoo, “TEM Studies of Platinum Nanowires Fabricated in Mesoporous Silica MCM-41,” Angew. Chem. Int. Ed. 39, 3107 (2000).
    31. R. Leon, D. Margolese, G. Stucky, and P. M. Petroff, “Nanocrystalline Ge filaments in the pores of a mesosilicate,” Phy. Rev. B 52, 2285 (1995).
    32. H. J. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan, and C. M. Lieber, “Synthesis and characterization of carbide nanorods,” Nature 375, 769 (1995).
    33. T. J. Trentler, S. C. Goel, K. M. Hickman, A. M. Viano, M. Y. Chiang, A. M. Beatty, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solid Growth of Indium Phosphide Fibers from Organometallic Precursors: Elucidation of Molecular and Nonmolecular Components of the Pathway,” J. Am. Chem. Soc. 119, 2172 (1997).
    34. P. D. Markowitz, M. P. Zach, P. C. Gibbons, R. M. Penner, and W. E. Buhro, “Phase Separation in AlxGa1-xAs Nanowhiskers Grown by the Solution-Liquid-Solid Mechanism,” J. Am. Chem. Soc. 123, 4502 (2001).
    35. O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff, and W. E. Buhro, “CVD Growth of Boron Nitride Nanotubes,” Chem. Mater. 12, 1808 (2000).
    36. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science 287, 1471 (2000).
    37. L. Manna, E. C. Scher, and A. P. Alivisatos, “Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals,” J. Am. Chem. Soc. 122, 12700 (2000).

    38. C. Chao, C. Chen, and Z. Lang, “Simple Solution-Phase Synthesis of Soluble CdS and CdSe Nanorods,” Chem. Mater. 12, 1516 (2000).
    39. Y. F. Liu, J. H. Zeng, W. X. Zhang, W. C. Yu, Y. T. Qian, J. B. Cao, and W. Q. Zhang, “Solvothermal route to Bi3Se4 nanorods at low temperature,” J. Mater. Res. 16, 3361 (2001).
    40. X. Jiang, Y. Xie, J. Lu, L. Y. Zhu, W. He, and Y. T. Qian, “Simultaneous In Situ Formation of ZnS Nanowires in a Liquid Crystal Template by -Irradiation,” Chem. Mater. 13, 1213 (2001).
    41. B. Gates, Y. Yin, and Y. Xia, “A Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10-30 nm,” J. Am. Chem. Soc. 122, 12582 (2000).
    42. A. P. Levitt (ed.), Whisker Technology (Wiley-Interscience, New York, 1970).
    43. Y. Wu and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc. 123, 3165 (2001).
    44. S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, “Oxide-assisted semiconductor nanowire growth,” MRS Bulletin 24, 36 (1999).
    45. W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, R. Kalish, and S. T. Lee, “Free-standing Single Crystal Silicon Nanoribbons,” J. Am. Chem. Soc. 123, 11095 (2001).
    46. S. T. Lee, N. Wang, and C. S. Lee, “Semiconductor nanowires: synthesis, structure and properties,” Mater. Sci. Eng. A 286, 16 (2000).
    47. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide,” Chem. Phys. Lett. 299, 237 (1999).

    48. P. Yang and C. M. Lieber, “Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites,” J. Mater. Res. 12, 2981 (1997).
    49. P. Yang and C. M. Lieber, “Nanorod-Superconductor Composites: A Pathway to Materials with High Critical Current Densities,” Science 273, 1836 (1996).
    50. Z. L. Wang, R. P. Gao, Z. W. Pan, and Z. R. Dai, “Nano-Scale Mechanics of Nanotubes, Nanowires, and Nanobelts,” Adv. Eng. Mater. 3, 657 (2001).
    51. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science 291, 1947 (2001).
    52. C. Carmen, V. Víctor, G. Mónica and G. Francisco, “Production of Chromium-Doped α-Al2O3 Whiskers Via Vapor Liquid Solid Deposition,” J. Am. Ceram. Soc. 89, 323 (2006).
    53. Z.Q. Yu, W.W. Du, “Preparation of nanometer-sized alumina whiskers,” J. Mater. Res. 13, 3017 (1998).
    54. T.L. Dragone, W.D. Nix, “Steady state and transient creep properties of an aluminum alloy reinforced with alumina fibers,” Acta Metall. Mater. 40, 2781 (1992).
    55. T. F. Cooke, “Inorganic Fibers - A Literature Review,” J. Am. Ceram. Soc. 74, 2959 (1991).
    56. J. Zhou, S.Z. Deng, J. Chen, J.C. She, N.S. Xu, “Synthesis of crystalline alumina nanowires and nanotrees,” Chem. Phys. Lett. 365, 505 (2002).
    57. Y.J. Zhang, J. Liu, R.R. He, Q. Zhang, X. Zhang, J. Zhu, “Synthesis of alumina nanotubes using carbon nanotubes as templates,” Chem. Phys. Lett. 360, 579 (2002).

    58. J.P. Zou, L. Pu, X.M. Bao, D. Feng, “Branchy alumina nanotubes,” Appl. Phys. Lett. 80, 1079 (2002).
    59. Y.T. Pang, G.W. Meng, L.D. Zhang, W.J. Shan, C. Zhang, X.Y. Gao, A.W. Zhao, Y.Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J. Solid State Electrochem. 7, 344 (2003).
    60. R. B. Wehrspohn, J. Choi, Y. Luo, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” J. Appl. Phys. 94, 4757 (2003).
    61. K. Moritani, I. Takagi, H. Moriyama, “Production behavior of irradiation defects in α-alumina and sapphire under ion beam irradiation,” J. Nuc. Mater. 326, 106 (2004).
    62. Y. Asaoka, H. Moriyama, K. Iwasaki, K. Moritani, Y. Ito, “In-situ luminescence measurement of irradiation defects in lithium oxide,” J. Nucl. Mater. 183, 174 (1991).
    63. Y. Asaoka, H. Moriyama, Y. Ito, “PRODUCTION BEHAVIOR AND ITS MODELING OF IRRADIATION DEFECTS IN LITHIUM-OXIDE UNDER ION-BEAM IRRADIATION,” Fusion Technol. 21, 1944 (1992).
    64. S. M. Bradshaw, J. L. Spicer, “Combustion Synthesis of Aluminum Nitride Particles and Whiskers,” J. Am. Ceram. Soc. 82, 2293 (1999).
    65. M. C. Benjamin, C. Wang, R. F. Davis, R. J. Nemanich, “Observation of a Negative Electron-Affinity for Heteroepitaxial AlN on Alpha-SiC (0001),” Appl. Phys. Lett. 64, 3288 (1994).
    66. G. Rubio-Bollinger, N. Agrait, S. Vieira, “Atomic-Sized Metallic Contacts: Mechanical Properties and Electronic Transport,” Phys. Rev. Lett. 76, 2302 (1996).

    67. E. Scheer, N. Joyez, D. Esteve, C. Urbina, M.H. Devoret, “Conduction Channel Transmissions of Atomic-Size Aluminum Contacts,” Phys. Rev. Lett. 78, 3535 (1997).
    68. M. Saka and R. Ueda, “Formation of metallic nanowires by utilizing electromigration,” J. Mater. Res. 20, 2712 (2005).
    69. T. P. Yan, W. M. Guo, Z. D. Li, S. J. Wen,” Synthesis of ordered Al nanowire arrays,” Solid State Sciences, 5, 1063 (2003).
    70. Akihisa Inoue, “Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys”, Acta Mater. 48, 279 (2000).
    71. A. Takeuchi and A. Inoue, “Calculations of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys”, Materials Transactions JIM 41, 1372 (2000).
    72. C. Fan, A. Takeuchi, and A. Inoue, “Preparation and Mechanical Properties of Zr-based Bulk Nanocrystalline Alloys Containing Compound and Amorphous Phases”, Materials Transactions JIM 40, 42 (1999).
    73. T. Zhang and A. Inoue, “Preparation of Ti-Cu-Ni-Si-B Amorphous Alloys with a Large Supercooled Liquid Region”, Materials Transactions JIM 40, 301 (1999).
    74. D. V. Louzguine and A. Inoue, “Influence of Rare Earth Metals (RE) on Formation Range and Structure of Amorphous Phase in Ge-Al-Cr-RE System”, Materials Transactions JIM 40, 485 (1999).
    75. Y. C. Sheu, “A Study on the Multi-Component Alloy Systems with Equal-Mole FCC or BCC Elements”, Master Thesis, National Tsing Hua University (2000).
    76. G. T. Lai, “Microstructure and Properties of the Multi-Component Alloy Systems with Equal-Mole Elements”, Master Thesis, National Tsing Hua University (1998).

    77. K. S. Huang, “A Study on the Multi-Component Alloy Systems Containing Equal-Mole Elements”, Master Thesis, National Tsing Hua University (1996).
    78. H. W. Kui, A. L. Greer, and D. Turnbull, “Formation of Bulk Metallic Glass by Fluxing”, App. Phys. Let. 45, 615 (1984).
    79. A. Inoue, K. Kita, T. Masumoto, and K. Ohtera, “New Amorphous Alloys with Good Ductility in Al-Ce-Nd, Al-Ce-Co, Al-Ce-Ni, Al-Ce-Cu Systems”, Japan. J. App. Phys. Part 2-Let. 27, 1796 (1988).
    80. A. Inoue, K. Kita, T. Masumoto, and T. Zhang, “An Amorphous La55Al25Ni20 Alloy Prepare by Water Quenching”, Materials Transactions JIM 30, 722 (1989).
    81. A. Inoue, T. Zhang, and T. Masumoto, “Zr-Al-Ni Amorphous Alloys with high Glass-Transition Temperature and Significant Supercooled Liquid Region”, Materials Transactions JIM 31, 177 (1990).
    82. S. J. Lin and K. S. Liu, “Aging Effect on Abrasion Rate in an Al-Zn-Mg/SiC Composite”, Wear 121, 1 (1988).
    83. Y. Q. Zhu, W. K. Hsu, W. Z. Zhou, M. Terrones, H.W. Kroto, D. R. M. Walton, “Selective Co-catalysed growth of novel MgO fishbone fractal nanostructures,” Chem. Phys. Lett. 347, 337 (2001).
    84. K. J. McCarthy, A. Baciero, B. Zurro, U. Arp, C. Tarrio, T. B. Lucatorto, A. Moroño, P. Martin, E. R. Hodgson, “Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation,” J. Appl. Phys. 92, 6541(2002).

    85. W. K Hsu, S. Trasobares, H. Terrones, M. Terrones, N. Grobert, Y. Q. Zhu, W. Z. Li, R. Escudero, J. P. Hare, H.W. Kroto, D. R. M. Walton, “Electrolytic Formation of Carbon-Sheathed Mixed Sn-Pb Nanowires,” Chem. Mater. 11, 1747 (1999).
    86. C.C Tang, S.S. Fan, P. Li, M. Lamy, D.L. Chapelle, H.Y. Dang, “In situ catalytic growth of Al2O3 and Si nanowires,” J. Crtsy, Growth 224, 117 (2001).
    87. D. N. Mcllroy, D. Zhang, Y. Kranov, M. G. Norton, “Nanosprings,” Appl. Phys. Lett.79, 1540 (2001).
    88. X. S. Peng, G. W. Zhang, G. W. Meng, X .F. Wang, Y. W. Wang, C. Z. Wang, G. S. Wu, “ Photoluminescence and Infrared Properties of -Al2O3 Nanowires and Nanobelts,” J. Phys. Chem. B. 106, 11163(2002).
    89. W. Chen, H.G. Tang, C. S. Shi, J. Deng, J.Y. Shi, Y. X. Zhou, S.D. Xia, Y. Wang, S. T. Yin, “Investigation on the origin of the blue emission in titanium doped sapphire: Is F + color center the blue emission center?” Appl. Phys. Lett. 67, 317(1995).
    90. Y. Du, L. Cai, C. M. Mo, J. Chen, L. D. Zhang, X.G. Zhu, “Preparation and photoluminescence of alumina membranes with ordered pore arrays,” Appl. Phys. Lett. 74, 2951(1999).
    91. J.Q. Hu, Y. Jiang, X.M. Meng, C.S. Lee, S.T. Lee, “A simple large-scale synthesis of very long aligned silica nanowires,” Chem. Phys. Lett. 367, 339 (2003).
    92. T. Toyoda, T. Obikawa, “Photoluminescence excitation and photoacoustic spectra for ceramic Al2-xCrxO3 (0.002≤x≤0.05),” Jpn. J. Appl. Phys. 36, 4339 (1997).

    93. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, “ Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett. 81, 3648 (2002).
    94. Y. B. Li, Y. Bando, D. Golberg, “Quasi-Aligned Single-Crystalline W18O49 Nanotubes and Nanowires,” Adv. Mate. 15, 1294 (2003).
    95. S. Ciraci, I. Batra, “ELECTRONIC-STRUCTURE OF ALPHA-ALUMINA AND ITS DEFECT STATES,” Phys. Rev. 28, 982 (1983).
    96. J.R. Chelkowsky, A. Franciosi, Electronic Materials. A New Era in Materials Science, Springer, Berlin, 1991.
    97. R.H. French, “ELECTRONIC BAND-STRUCTURE OF AL2O3, WITH COMPARISON TO AION AND AIN,” J. Am. Ceram. Soc. 73, 477 (1990).
    98. B. Holm, R. Ahuja, Y. Yourdshahyan, B. Johansson, B.I. Lundqvist, “Elastic and optical properties of alpha- and kappa-Al2O3,” Phys. Rev. B. 20, 12777 (1999).
    99. G. Drager, J.A. Leiro, “ELECTRONIC-STRUCTURE OF ALPHA-AL2O3 STUDIED BY POLARIZED X-RAY-EMISSION SPECTROSCOPY,” Phys. Rev. B. 41, 12919 (1990).
    100. D. Yu, Q. Zhao, X. Xu, H. Zhang, Y. Chen, J. Xu, “Catalyst-free growth of single-crystalline alumina nanowire arrays”, Appl. Phys. A 79, 1721 (2004).
    101. E. Scheer, N. Joyez, D. Esteve, C. Urbina, M.H. Devoret, “Conduction Channel Transmissions of Atomic-Size Aluminum Contacts,” Phys. Rev. Lett. 78, 3535 (1997).
    102. Kent R. Van Horn (ed.), Aluminum (Metals Park, Ohio, American Society for Metals, p. 378, 1967).

    103. S. Z. Lu and A. Hellawell, “Growth mechanisms of silicon in Al-Si alloys,” J. Crystal Growth 73, 316 (1985).
    104. D. R. Hamilton and R. G. Seidensticker, “Propagation Mechanism of Germanium Dendrites,” J. Appl. Phys. 31, 1165 (1960).
    105. H. J. Monkhorst, J.D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 16, 1748 (1977).
    106. Z. Yao, H.W.Ch. Postma, L. Balents, C. Kekkers, “Carbon nanotube intramolecular junctions,” Nature 402, 273 (1999).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE