簡易檢索 / 詳目顯示

研究生: 陳文碩
Chen, Wen-Shuo
論文名稱: 發展多效桿狀病毒表現載體並用以生產具功能性Neuroligin 1的胞外片段及NR1A/NR2B△C NMDA受體蛋白之研究
Development of polycistronic baculovirus expression system and employ it to produce functional neuroligin-1 extracellular fragment and NR1/NR2B△C receptors in insect cells
指導教授: 張兗君
Chang, Yen-Chung
吳宗遠
Wu, Tzong-Yuan
口試委員: 趙裕展
Chao, Yu-Chan
馬徹
Ma, Che
金亭佑
Chin, Ting-Yu
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 88
中文關鍵詞: 桿狀病毒核醣體內轉譯序列三效載體Neuroligin-1NMDA受體
外文關鍵詞: Baculovirus, IRES, Tri-cistronic vector, Neuroligin-1, NMDA receptors
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經細胞黏附蛋白,neuroligin 及neurexin的交互作用為連接前突觸與後突觸神經細胞所必需,並具有調控神經訊號傳遞及特化神經之功能性。Neuroligins (NLs) 被發現在後突觸細胞膜上具有促進神經軸突生成的能力。在第參章中,我們使用雙效桿狀病毒表現系統來同時表現NL1的胞外片段蛋白與綠螢光蛋白。重組的NL1蛋白會分泌至細胞上清液中,而且利用胞內綠螢光釋放至胞外做為細胞裂解的訊號,用來決定最佳收取重組NL1蛋白的時間點。我們從感染的細胞上清液中,利用鎳管柱進行親和層析純化後,可得到 96 %純度以上的重組NL1蛋白,產量約129 ± 13 μg / 8x107 High Five cells。我們藉由轉印在玻璃基板上處理NL1/PLL (poly-L-lysine) (137.07 ± 9.74 μm/day) 以及PLL (105.53 ± 4.53 μm/day) 的實驗來證實純化後的NL1蛋白的確具有促進神經軸突的生長速率之活性。這些結果也經由免疫螢光染色來證實及指出重組蛋白可經由一步驟親和性層析與利用雙效桿狀病毒表現系統來監測細胞裂解純化而得。此技術及此玻璃基板方法學可提供一個簡單、有效及有用的平台來了解在神經再生與突觸形成的研究上,外來因子所扮演的角色。
    在大腦中,NMDA受體不僅是興奮性神經傳導的重要調節者,而且在長期增益作用 (long term potentiation) 上也扮演重要的角色。NMDA受體是一種對鈣離子具高通透性的離子通道,過度活化會導致神經細胞的死亡。先前研究指出具有甘胺酸結合位子的NR1次單元蛋白需與 NR2或NR3次單元蛋白共同組裝 (assembly) 才能形成具有功能性的NMDA受體。然而,NMDA受體的四級結構仍尚未被建立。為了要表現具有功能性的NMDA受體,多效真核表現系統是必須的。在第肆章中,我們藉由IRESs的連接構築出三效桿狀病毒表現載體,並證實可同時表現三個基因。在伍章中,我們利用三效桿狀病毒表現載體於昆蟲細胞中同時表現NMDA受體蛋白。使用西方轉漬法及免疫螢光染色來證實重組之NMDA受體可在膜上表現。鈣離子通道活性分析的結果指出受感染的昆蟲細胞膜上的NMDA受體會受到麩胺酸及NMDA的刺激而導致胞內鈣離子濃度的變化。這些研究對NMDA受體的蛋白結構上的決定是有所助益的。


    The interaction between the synaptic adhesion molecules neuroligins and neurexins is essential for connecting the pre- and post-synaptic neurons, modulating neuronal signal transmission, and facilitating neuronal axogenesis. In chapter 3, we describe the simultaneous expression of the extracellular domain of neuroligin 1 (NL1) proteins along with the enhanced green fluorescent protein (EGFP) using the bi-cistronic baculovirus expression vector system (bi-BEVS). Recombinant NL1 proteins were secreted into the culture medium and the optimum harvest time for NL1 proteins based on the lysis of infected cells was determined by the release of cytosolic EGFP. The NL1 protein (129 ± 13 μg / 8x107 High Five cells; ~96% purity by metal affinity chromatography) was obtained from the supernatant of the recombinant virus-infected insect cells. A novel chip was employed to address whether the recombinant NL1 is functional in axogenesis. The purified NL1 promoted and enhanced the growth rate (137.07 ± 9.74 μm/day) of the axon on NL1/PLL (poly-L-lysine)-coated fine lines on the chip compared to those lines that were coated with PLL alone (105.53 ± 4.53 μm/day). These results were confirmed by fluorescence immunocytochemistry and demonstrated that the recombinant protein can be purified by a one-step process using IMAC combined with monitoring of cell lysis by bi-BEVS. This technique along with our novel chip offers a simple, cost-effective and useful platform for understanding the roles of NL1 protein in neuronal regeneration and synaptic formation studies.
    NMDA receptors are critical mediators of excitatory neurotransmission in the brain, being pivotal for long term potentiation. NMDA receptor channels are highly permeable to calcium ions, and thus overactivation leads to excitotoxic neuronal cell death. Functional NMDA receptors are formed from the co-assembly of the obligatory NR1 glycine-binding subunit with NR2 and/or NR3 subunits. However, the quaternary structure of NMDA receptors is still not yet established. To functional express these important heteromeric NMDA receptors, a polycistronic eucaryotic expression system is required. In chapter 4, we had constructed a tri-cistronic expression votor by the inclusion of two internal entry sites (IRESs) and demonstrated that three genes can be co-expressed by this technique. In chapter 5, we employed the novel baculovirus expression vectors to express NMDA receptors in Sf21 insect cells. Western blot and immunostaining demonstrated the expression of NMDA receptors on plasma membrane. Calcium image analysis indicated the function of this recombinant NMDA is responsible to NMDA and glutamate. These studies will facilitate the protein structure determination of NMDA receptor.

    英文摘要……………………………………………………………………………..I 中文摘要…………………………………………………………………………………………………………….…II 目錄………………………………………………………………………………………………………………………IV 縮寫表…………………………………………………………………………………………………………….…….VI 壹、序論……………………………………………………………………………………………………………..…1 桿狀病毒…………………………………………………………………………………………………………....1 雙效表現載體系統……………………………………………………………………………………………..2 核醣體內轉譯序列………………………………………………………………...3 Neuroligin 1 (NL1)………………………………………………………................5 多效載體…………………………………………………………………………………………………………….7 NMDA 受體……………………………………………………………………………………………………....8 貳、材料與方法……………………………………………………………………………………….…….……..11 一、實驗材料…………………………………………………………………………………………….………..11 二、實驗方法……………………………………………………………………………………………………..14 (一) 重組病毒之建立…………………………………………………………………………………14 (二) 蛋白樣品之生化分析…………………………………………………………………………15 (三) 重組蛋白Neuroligin 1 蛋白之純化…………………………………………………..17 (四) 酵素與螢光蛋白活性之檢測……………………………………………………………..18 (五) 病毒連續繼代 (serial passage) 對基因表現影響之分析………………….19 (六) 流式細胞儀偵測病毒共感染之效率分析………………………………………….20 (七) 免疫螢光染色 (immunocytochemistry)……………………………………………..20 (八) 鈣離子通道活性之分析…………………………………………………………………….20 參、利用雙效表現系統生產具有活性Neuroligin 1的胞外片段………………………...22 肆、藉由連接兩個核醣體內轉譯序列發展出類原核的多效桿狀病毒表現載體 之研究..................................................................................................................28 伍、利用多效表現載體在昆蟲系統中表現具有功能性的NR1A/NR2B△C NMDA受體…………………………………………………………………….34 陸、圖…………………………………………………………………………………………………………..…….….41 圖一、重組 NL1 蛋白的表現…………………………………………………41 圖二、於vAcAzSNL1-Rhir-E 感染 Hi5 昆蟲細胞中,NL1 蛋白及綠螢光 蛋白的表現情形……………………………………………………………………………………43 圖三、重組 NL1 蛋白之純化…………………………………………………44 圖四、重組 NL1 蛋白具可增加海馬迴神經軸突之生長速率之功能性…….45 圖五、利用免疫螢光染色來觀察 NL1 蛋白促進神經軸突生長的情形…….47 圖六、以相同IRES序列於桿狀病毒基因體中易因重組而導致基因刪除…...48 圖七、不同重組病毒的轉移載體之構築圖……………………………………………………..50 圖八、於 vAcD-PnV539-S-Rhir-E 感染細胞中,三效基因之表現情形…….51 圖九、於三效或雙效重組病毒感染細胞中,IRES 轉譯活性之定量分析…..53 圖十、於 vAcD-PnV539-S-Rhir-E 感染細胞中,SEAP 與綠螢光蛋白 表現受病毒連續繼代影響之分析…………..………………………..…55 圖十一、桿狀病毒轉移載體,pBacX2-Rhir-E 之構築……………………….57 圖十二、以 vAcNR1A-Rhir-EGFP 及 vAcNR2B-PnV539-DsRed 共感染 Sf21 細胞之效率分析………………………………………………..58 圖十三、在以 vAcNR2B-PnV539-NR1A-Rhir-E 感染的 Sf21 細胞中, NR2B 及 NR1A 次單元蛋白共表現之分析…………………...…60 圖十四、利用免疫螢光染色來分析以 vAcNR2B-PnV539-NR1A-Rhir-E 感 染 Sf21 細胞中,NMDA 受體NR2B 及 NR1A 次單元蛋白之 表現情形………………………………………………………………62 圖十五、於vAcNR2B-PnV539-NR1A-Rhir-E 感染的 Sf21 細胞表現NR1A 及NR2B次單元蛋白之結合分析………………………………….…65 圖十六、於Sf21 細胞表現NR1A /NR2B 受體之鈣離子通道活性分析……66 圖十七、於vAcAzSNL1-Rhir- E感染的 Sf21 細胞,並無法由NMDA 或 glutamate 引發胞內鈣離子的濃度改變…………………………….68 圖十八、利用免疫螢光染色來分析以 vAcNR1A-Rhir-E 感染的 Sf21 與 Hi5 細胞中,NR1A 次單元蛋白之表現情形……………………...71 圖十九、利用免疫螢光染色來分析以 vAcIFN-□-Rhir-E 感染的 Sf21 與 Hi5 細胞中,NR1A 次單元蛋白之表現情形………………………73 圖二十、於 vAcNR1A-Rhir-E 感染的 Sf21 細胞或 cortical neurons, NMDA 引發胞內鈣離子濃度變化的之特性分析…………………..75 柒、參考文獻…………………………………………………………………………………………………….……77 捌、附錄…………………………………………………………………………………………………………..…...85

    Al Ahmad, A., Lee, B., Stack, J., Parham, C., Campbell, J., Clarke, D., Fertala, A. and Bix, G.J., Endostatin binds nerve growth factor and thereby inhibits neurite outgrowth and neuronal migration in-vitro. Brain Res 1360, 28-39.
    Ali, S.A., Joao, H.C., Csonga, R., Hammerschmid, F. and Steinkasserer, A., 1996. High-yield production of functionally active human serum transferrin using a baculovirus expression system, and its structural characterization. Biochem J 319 ( Pt 1), 191-5.
    Anegawa, N.J., Guttmann, R.P., Grant, E.R., Anand, R., Lindstrom, J. and Lynch, D.R., 2000. N-Methyl-D-aspartate receptor mediated toxicity in nonneuronal cell lines: characterization using fluorescent measures of cell viability and reactive oxygen species production. Brain Res Mol Brain Res 77, 163-75.
    Arac, D., Boucard, A.A., Ozkan, E., Strop, P., Newell, E., Sudhof, T.C. and Brunger, A.T., 2007. Structures of neuroligin-1 and the neuroligin-1/neurexin-1 beta complex reveal specific protein-protein and protein-Ca2+ interactions. Neuron 56, 992-1003.
    Awobuluyi, M., Yang, J., Ye, Y., Chatterton, J.E., Godzik, A., Lipton, S.A. and Zhang, D., 2007. Subunit-specific roles of glycine-binding domains in activation of NR1/NR3 N-methyl-D-aspartate receptors. Mol Pharmacol 71, 112-22.
    Belyaev, A.S. and Roy, P., 1993. Development of baculovirus triple and quadruple expression vectors: co-expression of three or four bluetongue virus proteins and the synthesis of bluetongue virus-like particles in insect cells. Nucleic Acids Res 21, 1219-23.
    Berger, I., Fitzgerald, D.J. and Richmond, T.J., 2004. Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22, 1583-7.
    Berninghausen, O., Rahman, M.A., Silva, J.P., Davletov, B., Hopkins, C. and Ushkaryov, Y.A., 2007. Neurexin Ibeta and neuroligin are localized on opposite membranes in mature central synapses. J Neurochem 103, 1855-63.
    Bertolotti-Ciarlet, A., Ciarlet, M., Crawford, S.E., Conner, M.E. and Estes, M.K., 2003. Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine 21, 3885-900.
    Bolliger, M.F., Frei, K., Winterhalter, K.H. and Gloor, S.M., 2001. Identification of a novel neuroligin in humans which binds to PSD-95 and has a widespread expression. Biochem J 356, 581-8.
    Brewer, G.J., Torricelli, J.R., Evege, E.K. and Price, P.J., 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35, 567-76.
    Buller, A.L. and White, M.M., 1990. Functional acetylcholine receptors expressed in Xenopus oocytes after injection of Torpedo beta, gamma, and delta subunit RNAs are a consequence of endogenous oocyte gene expression. Mol Pharmacol 37, 423-8.
    Carafoli, E., 1994. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. Faseb J 8, 993-1002.
    Carroll, R.C. and Zukin, R.S., 2002. NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci 25, 571-7.
    Cha, H.J., Gotoh, T. and Bentley, W.E., 1997. Simplification of titer determination for recombinant baculovirus by green fluorescent protein marker. Biotechniques 23, 782-4, 786.
    Chao, Y.-C., Chen, S.-L. and Li, C.-F., 1996. Pest control by fluorescence. Nature 380, 396-397.
    Chatterton, J.E., Awobuluyi, M., Premkumar, L.S., Takahashi, H., Talantova, M., Shin, Y., Cui, J., Tu, S., Sevarino, K.A., Nakanishi, N., Tong, G., Lipton, S.A. and Zhang, D., 2002. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415, 793-8.
    Chen, W.S., Chang, Y.C., Chen, Y.J., Chen, Y.J., Teng, C.Y., Wang, C.H. and Wu, T.Y., 2009. Development of a prokaryotic-like polycistronic baculovirus expression vector by the linkage of two internal ribosome entry sites. J Virol Methods 159, 152-9.
    Chen, Y.J., Chen, W.S. and Wu, T.Y., 2005. Development of a bi-cistronic baculovirus expression vector by the Rhopalosiphum padi virus 5' internal ribosome entry site. Biochem Biophys Res Commun 335, 616-23.
    Cheng, H.H., Huang, Z.H., Lin, W.H., Chow, W.Y. and Chang, Y.C., 2009. Cold-induced exodus of postsynaptic proteins from dendritic spines. J Neurosci Res 87, 460-9.
    Cheng, H.H., Liu, S.H., Lee, H.C., Lin, Y.S., Huang, Z.H., Hsu, C.I., Chen, Y.C. and Chang, Y.C., 2006. Heavy chain of cytoplasmic dynein is a major component of the postsynaptic density fraction. J Neurosci Res 84, 244-54.
    Chih, B., Engelman, H. and Scheiffele, P., 2005. Control of excitatory and inhibitory synapse formation by neuroligins. Science 307, 1324-8.
    Chin, T.Y., Chueh, S.H. and Tao, P.L., 2006. S-Nitrosoglutathione and glutathione act as NMDA receptor agonists in cultured hippocampal neurons. Acta Pharmacol Sin 27, 853-60.
    Chung, S., Andersson, T., Sonntag, K.C., Bjorklund, L., Isacson, O. and Kim, K.S., 2002. Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells 20, 139-45.
    Comoletti, D., Flynn, R., Jennings, L.L., Chubykin, A., Matsumura, T., Hasegawa, H., Sudhof, T.C. and Taylor, P., 2003. Characterization of the interaction of a recombinant soluble neuroligin-1 with neurexin-1beta. J Biol Chem 278, 50497-505.
    Craig, A.M. and Kang, Y., 2007. Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol 17, 43-52.
    Cribb, R.C., Haddadin, F.T., Lee, J.S. and Webb, K., 2008. Baculovirus expression and bioactivity of a soluble 140 kDa extracellular cleavage fragment of L1 neural cell adhesion molecule. Protein Expr Purif 57, 172-9.
    Cull-Candy, S., Brickley, S. and Farrant, M., 2001. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11, 327-35.
    Davis, T.R., Wickham, T.J., McKenna, K.A., Granados, R.R., Shuler, M.L. and Wood, H.A., 1993. Comparative recombinant protein production of eight insect cell lines. In Vitro Cell Dev Biol Anim 29A, 388-90.
    de Felipe, P., 2002. Polycistronic viral vectors. Curr Gene Ther 2, 355-78.
    De Jaco, A., Augusti-Tocco, G. and Biagioni, S., 2002. Alternative acetylcholinesterase molecular forms exhibit similar ability to induce neurite outgrowth. J Neurosci Res 70, 756-65.
    Dean, C. and Dresbach, T., 2006. Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci 29, 21-9.
    Decker, H., Jurgensen, S., Adrover, M.F., Brito-Moreira, J., Bomfim, T.R., Klein, W.L., Epstein, A.L., De Felice, F.G., Jerusalinsky, D. and Ferreira, S.T., N-methyl-D-aspartate receptors are required for synaptic targeting of Alzheimer's toxic amyloid-beta peptide oligomers. J Neurochem 115, 1520-9.
    Dityatev, A.E.-H., A., editors, ed, 2006. Molecular mechanisms of synaptogenesis. Springer Verlag, New York.
    Domier, L.L. and McCoppin, N.K., 2003. In vivo activity of Rhopalosiphum padi virus internal ribosome entry sites. J Gen Virol 84, 415-9.
    Dong, H., Xiang, Y.Y., Farchi, N., Ju, W., Wu, Y., Chen, L., Wang, Y., Hochner, B., Yang, B., Soreq, H. and Lu, W.Y., 2004. Excessive expression of acetylcholinesterase impairs glutamatergic synaptogenesis in hippocampal neurons. J Neurosci 24, 8950-60.
    Dotti, C.G., Sullivan, C.A. and Banker, G.A., 1988. The establishment of polarity by hippocampal neurons in culture. J Neurosci 8, 1454-68.
    Finkelstein, Y., Faktor, O., Elroy-Stein, O. and Levi, B.Z., 1999. The use of bi-cistronic transfer vectors for the baculovirus expression system. J Biotechnol 75, 33-44.
    Fukaya, M., Kato, A., Lovett, C., Tonegawa, S. and Watanabe, M., 2003. Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice. Proc Natl Acad Sci U S A 100, 4855-60.
    Goebel, D.J. and Poosch, M.S., 1999. NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A. Brain Res Mol Brain Res 69, 164-70.
    Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W. and Craig, A.M., 2004. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013-26.
    Grifman, M., Galyam, N., Seidman, S. and Soreq, H., 1998. Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis. Proc Natl Acad Sci U S A 95, 13935-40.
    Guarino, L.A., Xu, B., Jin, J. and Dong, W., 1998. A virus-encoded RNA polymerase purified from baculovirus-infected cells. J Virol 72, 7985-91.
    Hedin, K.E., Lim, N.F. and Clapham, D.E., 1996. Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes. Neuron 16, 423-9.
    Hellen, C.U. and Sarnow, P., 2001. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15, 1593-612.
    Ho, Y., Lin, P.H., Liu, C.Y., Lee, S.P. and Chao, Y.C., 2004. Assembly of human severe acute respiratory syndrome coronavirus-like particles. Biochem Biophys Res Commun 318, 833-8.
    Hollmann, M. and Heinemann, S., 1994. Cloned glutamate receptors. Annu Rev Neurosci 17, 31-108.
    Hooker, A.D., Green, N.H., Baines, A.J., Bull, A.T., Jenkins, N., Strange, P.G. and James, D.C., 1999. Constraints on the transport and glycosylation of recombinant IFN-gamma in Chinese hamster ovary and insect cells. Biotechnol Bioeng 63, 559-72.
    Horak, M., Chang, K. and Wenthold, R.J., 2008. Masking of the endoplasmic reticulum retention signals during assembly of the NMDA receptor. J Neurosci 28, 3500-9.
    Houdebine, L.M. and Attal, J., 1999. Internal ribosome entry sites (IRESs): reality and use. Transgenic Res 8, 157-77.
    Hsu, C.I., Wang, T.C., Hou, S.Y., Chin, T.Y. and Chang, Y.C., Quantitative study of the developmental changes in calcium-permeable AMPA receptor-expressing neurons in the rat somatosensory cortex. J Comp Neurol 518, 75-91.
    Hynd, M.R., Scott, H.L. and Dodd, P.R., 2004. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int 45, 583-95.
    Ichtchenko, K., Hata, Y., Nguyen, T., Ullrich, B., Missler, M., Moomaw, C. and Sudhof, T.C., 1995. Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 81, 435-43.
    Ichtchenko, K., Nguyen, T. and Sudhof, T.C., 1996. Structures, alternative splicing, and neurexin binding of multiple neuroligins. J Biol Chem 271, 2676-82.
    Inceoglu, A.B., Kamita, S.G. and Hammock, B.D., 2006. Genetically modified baculoviruses: a historical overview and future outlook. Adv Virus Res 68, 323-60.
    Irie, M., Hata, Y., Takeuchi, M., Ichtchenko, K., Toyoda, A., Hirao, K., Takai, Y., Rosahl, T.W. and Sudhof, T.C., 1997. Binding of neuroligins to PSD-95. Science 277, 1511-5.
    Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M. and et al., 1993. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268, 2836-43.
    Jamain, S., Quach, H., Betancur, C., Rastam, M., Colineaux, C., Gillberg, I.C., Soderstrom, H., Giros, B., Leboyer, M., Gillberg, C. and Bourgeron, T., 2003. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34, 27-9.
    Jan, E., 2006. Divergent IRES elements in invertebrates. Virus Res 119, 16-28.
    Jang, S.K., Pestova, T.V., Hellen, C.U., Witherell, G.W. and Wimmer, E., 1990. Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site. Enzyme 44, 292-309.
    Jiang, S.S., Chang, I.S., Huang, L.W., Chen, P.C., Wen, C.C., Liu, S.C., Chien, L.C., Lin, C.Y., Hsiung, C.A. and Juang, J.L., 2006. Temporal transcription program of recombinant Autographa californica multiple nucleopolyhedrosis virus. J Virol 80, 8989-99.
    Kawamoto, S., Uchino, S., Hattori, S., Hamajima, K., Mishina, M., Nakajima-Iijima, S. and Okuda, K., 1995. Expression and characterization of the zeta 1 subunit of the N-methyl-D-aspartate (NMDA) receptor channel in a baculovirus system. Brain Res Mol Brain Res 30, 137-48.
    Khodorov, B., Pinelis, V., Storozhevykh, T., Yuravichus, A. and Khaspekhov, L., 1999. Blockade of mitochondrial Ca2+ uptake by mitochondrial inhibitors amplifies the glutamate-induced calcium response in cultured cerebellar granule cells. FEBS Lett 458, 162-6.
    Klaassen, C.H., Bovee-Geurts, P.H., Decaluwe, G.L. and DeGrip, W.J., 1999. Large-scale production and purification of functional recombinant bovine rhodopsin with the use of the baculovirus expression system. Biochem J 342 ( Pt 2), 293-300.
    Kost, T.A., Condreay, J.P. and Jarvis, D.L., 2005. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23, 567-75.
    Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-5.
    Levinson, J.N., Chery, N., Huang, K., Wong, T.P., Gerrow, K., Kang, R., Prange, O., Wang, Y.T. and El-Husseini, A., 2005. Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1beta in neuroligin-induced synaptic specificity. J Biol Chem 280, 17312-9.
    Li, J., Menzel, C., Meier, D., Zhang, C., Dubel, S. and Jostock, T., 2007. A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies. J Immunol Methods 318, 113-24.
    Liang, M., Dubel, S., Li, D., Queitsch, I., Li, W. and Bautz, E.K., 2001. Baculovirus expression cassette vectors for rapid production of complete human IgG from phage display selected antibody fragments. J Immunol Methods 247, 119-30.
    Luckow, V.A. and Summers, M.D., 1988. Trends in the Development of Baculovirus Expression Vectors. Nat Biotech 6, 47-55.
    Madry, C., Mesic, I., Bartholomaus, I., Nicke, A., Betz, H. and Laube, B., 2007. Principal role of NR3 subunits in NR1/NR3 excitatory glycine receptor function. Biochem Biophys Res Commun 354, 102-8.
    Martinez-Salas, E., 1999. Internal ribosome entry site biology and its use in expression vectors. Curr Opin Biotechnol 10, 458-64.
    Mayer, M.L. and Westbrook, G.L., 1987. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28, 197-276.
    McIlhinney, R.A., Le Bourdelles, B., Molnar, E., Tricaud, N., Streit, P. and Whiting, P.J., 1998. Assembly intracellular targeting and cell surface expression of the human N-methyl-D-aspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology 37, 1355-67.
    McIlhinney, R.A., Molnar, E., Atack, J.R. and Whiting, P.J., 1996. Cell surface expression of the human N-methyl-D-aspartate receptor subunit 1a requires the co-expression of the NR2A subunit in transfected cells. Neuroscience 70, 989-97.
    Meguro, H., Mori, H., Araki, K., Kushiya, E., Kutsuwada, T., Yamazaki, M., Kumanishi, T., Arakawa, M., Sakimura, K. and Mishina, M., 1992. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357, 70-4.
    Meldrum, B.S., 1994. The role of glutamate in epilepsy and other CNS disorders. Neurology 44, S14-23.
    Meyer, G., Varoqueaux, F., Neeb, A., Oschlies, M. and Brose, N., 2004. The complexity of PDZ domain-mediated interactions at glutamatergic synapses: a case study on neuroligin. Neuropharmacology 47, 724-33.
    Mistretta, T.A. and Guarino, L.A., 2005. Transcriptional activity of baculovirus very late factor 1. J Virol 79, 1958-60.
    Mizuguchi, H., Xu, Z., Ishii-Watabe, A., Uchida, E. and Hayakawa, T., 2000. IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1, 376-82.
    Monaghan, D.T., Bridges, R.J. and Cotman, C.W., 1989. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29, 365-402.
    Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B. and Seeburg, P.H., 1992. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217-21.
    Morgan, R.A., Couture, L., Elroy-Stein, O., Ragheb, J., Moss, B. and Anderson, W.F., 1992. Retroviral vectors containing putative internal ribosome entry sites: development of a polycistronic gene transfer system and applications to human gene therapy. Nucleic Acids Res 20, 1293-9.
    Mori, H. and Mishina, M., 1995. Structure and function of the NMDA receptor channel. Neuropharmacology 34, 1219-37.
    Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N. and Nakanishi, S., 1991. Molecular cloning and characterization of the rat NMDA receptor. Nature 354, 31-7.
    Nagy, J., Boros, A., Dezso, P., Kolok, S. and Fodor, L., 2003. Inducible expression and pharmacology of recombinant NMDA receptors, composed of rat NR1a/NR2B subunits. Neurochem Int 43, 19-29.
    Noad, R. and Roy, P., 2003. Virus-like particles as immunogens. Trends Microbiol 11, 438-44.
    O' Reilly, D.R., Miller, L.K. and Luckow, V.A., eds, 1992. Baculovirus Expression Vectors: A Laboratory Manual. Oxford University Press, Inc., New York.
    Okabe, S., Miwa, A. and Okado, H., 1999. Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J Neurosci 19, 7781-92.
    Olczak, M. and Olczak, T., 2006. Comparison of different signal peptides for protein secretion in nonlytic insect cell system. Anal Biochem 359, 45-53.
    Ozawa, S., Kamiya, H. and Tsuzuki, K., 1998. Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54, 581-618.
    Patterson, R.M., Selkirk, J.K. and Merrick, B.A., 1995. Baculovirus and insect cell gene expression: review of baculovirus biotechnology. Environ Health Perspect 103, 756-9.
    Pelletier, J., Kaplan, G., Racaniello, V.R. and Sonenberg, N., 1988. Translational efficiency of poliovirus mRNA: mapping inhibitory cis-acting elements within the 5' noncoding region. J Virol 62, 2219-27.
    Pelletier, J. and Sonenberg, N., 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-5.
    Perez-Otano, I., Schulteis, C.T., Contractor, A., Lipton, S.A., Trimmer, J.S., Sucher, N.J. and Heinemann, S.F., 2001. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 21, 1228-37.
    Philibert, R.A., Winfield, S.L., Sandhu, H.K., Martin, B.M. and Ginns, E.I., 2000. The structure and expression of the human neuroligin-3 gene. Gene 246, 303-10.
    Pijlman, G.P., Roode, E.C., Fan, X., Roberts, L.O., Belsham, G.J., Vlak, J.M. and van Oers, M.M., 2006. Stabilized baculovirus vector expressing a heterologous gene and GP64 from a single bicistronic transcript. J Biotechnol 123, 13-21.
    Pozzan, T., Rizzuto, R., Volpe, P. and Meldolesi, J., 1994. Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74, 595-636.
    Prange, O., Wong, T.P., Gerrow, K., Wang, Y.T. and El-Husseini, A., 2004. A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc Natl Acad Sci U S A 101, 13915-20.
    Priestley, T., Laughton, P., Myers, J., Le Bourdelles, B., Kerby, J. and Whiting, P.J., 1995. Pharmacological properties of recombinant human N-methyl-D-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells. Mol Pharmacol 48, 841-8.
    Prybylowski, K.L. and Wolfe, B.B., 2000. Developmental differences in alternative splicing of the NR1 protein in rat cortex and cerebellum. Brain Res Dev Brain Res 123, 143-50.
    Puschel, A.W. and Betz, H., 1995. Neurexins are differentially expressed in the embryonic nervous system of mice. J Neurosci 15, 2849-56.
    Rainczuk, A., Scorza, T., Spithill, T.W. and Smooker, P.M., 2004. A bicistronic DNA vaccine containing apical membrane antigen 1 and merozoite surface protein 4/5 can prime humoral and cellular immune responses and partially protect mice against virulent Plasmodium chabaudi adami DS malaria. Infect Immun 72, 5565-73.
    Raymond, L.A., Moshaver, A., Tingley, W.G. and Huganir, R.L., 1996. Glutamate receptor ion channel properties predict vulnerability to cytotoxicity in a transfected nonneuronal cell line. Mol Cell Neurosci 7, 102-15.
    Renard, S., Drouet-Petre, C., Partiseti, M., Langer, S.Z., Graham, D. and Besnard, F., 1999. Development of an inducible NMDA receptor stable cell line with an intracellular Ca2+ reporter. Eur J Pharmacol 366, 319-28.
    Rodems, S.M., Pullen, S.S. and Friesen, P.D., 1997. DNA-dependent transregulation by IE1 of Autographa californica nuclear polyhedrosis virus: IE1 domains required for transactivation and DNA binding. J Virol 71, 9270-7.
    Rohrmann, G.F., 1986. Polyhedrin structure. J Gen Virol 67 ( Pt 8), 1499-513.
    Roy, P., Mikhailov, M. and Bishop, D.H., 1997. Baculovirus multigene expression vectors and their use for understanding the assembly process of architecturally complex virus particles. Gene 190, 119-29.
    Royall, E., Woolaway, K.E., Schacherl, J., Kubick, S., Belsham, G.J. and Roberts, L.O., 2004. The Rhopalosiphum padi virus 5' internal ribosome entry site is functional in Spodoptera frugiperda 21 cells and in their cell-free lysates: implications for the baculovirus expression system. J Gen Virol 85, 1565-9.
    Rubenstein, J.L. and Merzenich, M.M., 2003. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2, 255-67.
    Schmidt, C.E., Dai, J., Lauffenburger, D.A., Sheetz, M.P. and Horwitz, A.F., 1995. Integrin-cytoskeletal interactions in neuronal growth cones. J Neurosci 15, 3400-7.
    Schwikowski, B., Uetz, P. and Fields, S., 2000. A network of protein-protein interactions in yeast. Nat Biotechnol 18, 1257-61.
    Semler, B.L. and Waterman, M.L., 2008. IRES-mediated pathways to polysomes: nuclear versus cytoplasmic routes. Trends Microbiol 16, 1-5.
    Senger, T., Schadlich, L., Gissmann, L. and Muller, M., 2009. Enhanced papillomavirus-like particle production in insect cells. Virology 388, 344-53.
    Sharma, K.V., Koenigsberger, C., Brimijoin, S. and Bigbee, J.W., 2001. Direct evidence for an adhesive function in the noncholinergic role of acetylcholinesterase in neurite outgrowth. J Neurosci Res 63, 165-75.
    Sheng, M., Cummings, J., Roldan, L.A., Jan, Y.N. and Jan, L.Y., 1994. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144-7.
    Sprengel, R., Suchanek, B., Amico, C., Brusa, R., Burnashev, N., Rozov, A., Hvalby, O., Jensen, V., Paulsen, O., Andersen, P., Kim, J.J., Thompson, R.F., Sun, W., Webster, L.C., Grant, S.G., Eilers, J., Konnerth, A., Li, J., McNamara, J.O. and Seeburg, P.H., 1998. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92, 279-89.
    Srivatsan, M., 2006. An analysis of acetylcholinesterase sequence for predicting mechanisms of its non-catalytic actions. Bioinformation 1, 281-4.
    Stephenson, F.A., Cousins, S.L. and Kenny, A.V., 2008. Assembly and forward trafficking of NMDA receptors (Review). Mol Membr Biol 25, 311-20.
    Stern, P., Cik, M., Colquhoun, D. and Stephenson, F.A., 1994. Single channel properties of cloned NMDA receptors in a human cell line: comparison with results from Xenopus oocytes. J Physiol 476, 391-7.
    Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. and Silman, I., 1991. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253, 872-9.
    Sydow, S., Kopke, A.K., Blank, T. and Spiess, J., 1996. Overexpression of a functional NMDA receptor subunit (NMDAR1) in baculovirus-infected Trichoplusia ni insect cells. Brain Res Mol Brain Res 41, 228-40.
    Tang, Y.P., Wang, H., Feng, R., Kyin, M. and Tsien, J.Z., 2001. Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology 41, 779-90.
    Uchino, S., Kudo, Y., Watanabe, W., Nakajima-Iijima, S. and Mishina, M., 1997. Inducible expression of N-methyl-D-aspartate (NMDA) receptor channels from cloned cDNAs in CHO cells. Brain Res Mol Brain Res 44, 1-11.
    Vagner, S., Galy, B. and Pyronnet, S., 2001. Irresistible IRES. Attracting the translation machinery to internal ribosome entry sites. EMBO Rep 2, 893-8.
    van Oers, M.M. and Vlak, J.M., 2007. Baculovirus genomics. Curr Drug Targets 8, 1051-68.
    Varney, M.A., Jachec, C., Deal, C., Hess, S.D., Daggett, L.P., Skvoretz, R., Urcan, M., Morrison, J.H., Moran, T., Johnson, E.C. and Velicelebi, G., 1996. Stable expression and characterization of recombinant human heteromeric N-methyl-D-aspartate receptor subtypes NMDAR1A/2A and NMDAR1A/2B in mammalian cells. J Pharmacol Exp Ther 279, 367-78.
    Ward, C.M. and Stern, P.L., 2002. The human cytomegalovirus immediate-early promoter is transcriptionally active in undifferentiated mouse embryonic stem cells. Stem Cells 20, 472-5.
    Woolaway, K.E., Lazaridis, K., Belsham, G.J., Carter, M.J. and Roberts, L.O., 2001. The 5' untranslated region of Rhopalosiphum padi virus contains an internal ribosome entry site which functions efficiently in mammalian, plant, and insect translation systems. J Virol 75, 10244-9.
    Wu, C.Y., Lo, C.F., Huang, C.J., Yu, H.T. and Wang, C.H., 2002. The complete genome sequence of Perina nuda picorna-like virus, an insect-infecting RNA virus with a genome organization similar to that of the mammalian picornaviruses. Virology 294, 312-23.
    Wu, H.I., Cheng, G.H., Wong, Y.Y., Lin, C.M., Fang, W., Chow, W.Y. and Chang, Y.C., A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons. Lab Chip 10, 647-53.
    Wu, T.Y., Wu, C.Y., Chen, Y.J., Chen, C.Y. and Wang, C.H., 2007. The 5' untranslated region of Perina nuda virus (PnV) possesses a strong internal translation activity in baculovirus-infected insect cells. FEBS Lett 581, 3120-6.
    Yahata, K., Kishine, H., Sone, T., Sasaki, Y., Hotta, J., Chesnut, J.D., Okabe, M. and Imamoto, F., 2005. Multi-gene gateway clone design for expression of multiple heterologous genes in living cells: conditional gene expression at near physiological levels. J Biotechnol 118, 123-34.
    Yamaji, H., Manabe, T., Kitaura, A., Izumoto, E. and Fukuda, H., 2006. Efficient production of recombinant protein in immobilized insect cell culture using serum-free basal media after baculovirus infection. Biochemical Engineering Journal 28, 67-72.
    Yu, X., Zhan, X., D'Costa, J., Tanavde, V.M., Ye, Z., Peng, T., Malehorn, M.T., Yang, X., Civin, C.I. and Cheng, L., 2003. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells. Mol Ther 7, 827-38.
    Zachepilo, T.G., Il'inykh, Y.F., Lopatina, N.G., Molotkov, D.A., Popov, A.V., Savvateeva-Popova, E.V., Vaido, A.I. and Chesnokova, E.G., 2008. Comparative analysis of the locations of the NR1 and NR2 NMDA receptor subunits in honeybee (Apis mellifera) and fruit fly (Drosophila melanogaster, Canton-S wild-type) cerebral ganglia. Neurosci Behav Physiol 38, 369-72.
    Zhang, J. and Ma, Y., 2001. Evidence for retroviral intramolecular recombinations. J Virol 75, 6348-58.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE