研究生: |
羅健瑋 Lo, Chien-Wei |
---|---|
論文名稱: |
控制高密度水平併列式單壁奈米碳管以改善上閘極場效電晶體電性之研究 Improved electrical performance of CNTFET by Controlling the Counts of High-Density Horizontally Aligned Array of smei-SWCNTs |
指導教授: |
蔡春鴻
Tsai, Chuen-Horng 柳克強 Leou, Keh-Chyang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 奈米碳管 、場效電晶體 、管徑 、原子層沈積 |
外文關鍵詞: | CNT, Field Effect Transistor, diameter, ALD |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因奈米碳管(carbon nanotube)具有獨特的準一維結構,且單壁奈米碳管(single-walled carbon nanotube)具有非凡的電子傳輸特性、高熱穩定性、良好的化性及機械穩定性,目前廣泛的被研究應用在各種奈米元件,而這些應用與半導性奈米碳管的特殊電性息息相關,因此本研究中進一步同時控制其碳管之準直性、管徑、以及區域密度並以其臨場製作上閘極奈米碳管電晶體(Top gate CNT field-effect transistors),是克服以往元件無法大面積製作應用上瓶頸之關鍵。
本研究利用Ni/SiO2雙層催化劑結構上層SiO2的鍍率控制奈米碳管的管徑,透過管徑的縮小以取得較高半導性碳管比例,並以高溫化學氣相沉積(thermal chemical vapor depositon)的方式於石英基板上側向成長水平且平行併列的半導性奈米碳管作為電晶體導電層,以此方式高密度且大面積的成長碳管可以改善過往使用單一碳管作為電晶體導電層造成開電流值過小的缺點,並經由氫氣前處理後的碳管製程,藉此通入高氧化還原能力的氣體使催化劑表面的氧化物還原成金屬,並且活化其表面幫助碳管成長,此一改善後的碳管製程能進一步提升了於石英基板上成長奈米碳管的產量和品質,且水平併列的準直性也不會在高密度下出現偏移,所成長的奈米碳管長度可達到50 μm以上。而利用微拉曼光譜分析儀所分析碳管的IG/ID 比值可大於20以上,表示碳管石墨化程度極佳。而改變催化劑上層結構SiO2的鍍率可以得到不同的碳管直徑分佈,藉此控制所製作的水平併列式碳管電晶體的電性表現,量測碳管的直徑範圍及碳管之管徑分佈是利用原子力顯微鏡(AFM),當SiO2鍍率為1.0 Å/s,碳管平均直徑為1.39 nm;鍍率為0.5 Å/s,碳管平均直徑為1.17 nm;鍍率為0.2 Å/s,碳管平均直徑為1.11 nm。從實驗結果可以得到在雙層催化劑結構的上層SiO2結構的鍍率為0.2 Å/s時,以CVD方式側向成長高品質單壁奈米碳管所製作的上閘極電晶體,在此鍍率下具有良好場效特性的元件佔了整體的88.8%;當上層SiO2結構的鍍率上升到0.5 Å/s時,元件出現良好場效特性佔了整體的47.8%;當上層SiO2結構的鍍率達到1.0 Å/s時,元件出現良好場效特性僅佔了整體的36.8。整體來看,當上層SiO2結構的鍍率逐漸下降時,元件中碳管所表現的半導特性逐漸變得明顯,並且在鍍率下降後,使得高密度且高比例的半導性奈米碳管在電晶體通道間形成並連,而達到高開電流值以及高開關電流比值的元件特性,並且相較於使用奈米碳管溶液旋塗法所製作的成奈米碳管電晶體,更能有效的定位定向高密度奈米碳管。在實驗中選擇使用正光阻進行製作黃光微影能避免碳管在多次lift-off過程損失其品質和準直性,提升整體元件良率,以上閘極結構並配合調整ALD參數所製作的High K介電層相較於背閘極結構的元件設計方式更能避免高漏電流的情況發生。另外從二極量測可以發現退火處理對電晶體電性的影響,因奈米碳管製程後在碳管上可能吸附著許多碳氫有機物,加上電極金屬製作完後在大氣環境中吸附了氧分子,使得所使用的鈦金屬與氧氣分子形成Ti-O鍵結提高了接觸阻抗,元件經過真空高溫退火製程後去除了碳管上的有機物,並使鈦金屬與奈米碳管接觸面形成Ti-C針狀鍵結降低接觸阻抗,使得元件直流電流值提高,增強元件的電流特性。整體而言實驗成功的提升了元件的良率以及調變特性,與國外不同團隊之間的比較更能了解並且實踐奈米碳管在場效電晶體元件上之應用。
[1] M. Terrones, “SCIENCE AND TECHNOLOGY OF THE TWENTY-FIRST CENTURY: Synthesis, Properties, and Applications of Carbon Nanotubes,” Annual Review of Materials Research, vol. 33, no. 1, pp. 419-501, 2003.
[2] H. Dai, “Carbon nanotubes: opportunities and challenges,” Surface Science, vol. 500, no. 1-3, pp. 218-241, 2002.
[3] M. P. Anantram, and F. Leonard, “Physics of carbon nanotube electronic devices,” Reports on Progress in Physics, no. 3, pp. 507, 2006.
[4] T. W. Odom, J.-L. Huang, P. Kim et al., “Atomic structure and electronic properties of single-walled carbon nanotubes,” Nature, vol. 391, no. 6662, pp. 62-64, 1998.
[5] H. Ago, K. Imamoto, N. Ishigami et al., “Competition and cooperation between lattice-oriented growth and step-templated growth of aligned carbon nanotubes on sapphire,” Applied Physics Letters, vol. 90, no. 12, pp. 123112, 2007.
[6] J. Kong, E. Yenilmez, T. W. Tombler et al., “Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides,” Physical Review Letters, vol. 87, no. 10, pp. 106801, 2001.
[7] A. Thess, R. Lee, P. Nikolaev et al., “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, vol. 273, no. 5274, pp. 483-487, July 26, 1996, 1996.
[8] T. W. Ebbesen, and P. M. Ajayan, “Large-scale synthesis of carbon nanotubes,” Nature, vol. 358, no. 6383, pp. 220-222, 1992.
[9] H. T. Soh, C. F. Quate, A. F. Morpurgo et al., “Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes,” Applied Physics Letters, vol. 75, no. 5, pp. 627-629, 1999.
[10] Z. Guangyu, W. Xinran, L. Xiaolin et al., "Carbon Nanotubes: From Growth, Placement and Assembly Control to 60mV/decade and Sub-60 mV/decade Tunnel Transistors." pp. 1-4.
[11] J. Kong, H. T. Soh, A. M. Cassell et al., “Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature, vol. 395, no. 6705, pp. 878-881, 1998.
[12] W. Hoenlein, "New prospects for microelectronics: carbon nanotubes." pp. 76-77.
[13] A. Naeemi, R. Sarvari, and J. D. Meindl, “Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI),” Electron Device Letters, IEEE, vol. 26, no. 2, pp. 84-86, 2005.
[14] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, vol. 393, no. 6680, pp. 49-52, 1998.
[15] R. Martel, T. Schmidt, H. R. Shea et al., “Single- and multi-wall carbon nanotube field-effect transistors,” Applied Physics Letters, vol. 73, no. 17, pp. 2447-2449, 1998.
[16] L. A. W. Robinson, S.-B. Lee, K. B. K. Teo et al., “Fabrication of self-aligned side gates to carbon nanotubes,” Nanotechnology, no. 2, pp. 290, 2003.
[17] S. J. Wind, J. Appenzeller, R. Martel et al., “Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes,” Applied Physics Letters, vol. 80, no. 20, pp. 3817-3819, 2002.
[18] Z. Chen, J. Appenzeller, J. Knoch et al., “The Role of Metal-Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors,” Nano Letters, vol. 5, no. 7, pp. 1497-1502, 2005.
[19] S. J. Wind, M. Radosavljevic, J. Appenzeller et al., “Transistor structures for the study of scaling in carbon nanotubes,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, no. 6, pp. 2856-2859, 2003.
[20] A. Javey, H. Kim, M. Brink et al., “High-[kappa] dielectrics for advanced carbon-nanotube transistors and logic gates,” Nat Mater, vol. 1, no. 4, pp. 241-246, 2002.
[21] F. L. Leonard, and J. Tersoff, “Role of Fermi-Level Pinning in Nanotube Schottky Diodes,” Physical Review Letters, vol. 84, no. 20, pp. 4693, 2000.
[22] Z. Chen, J. Appenzeller, J. Knoch et al., "The Role of Metal-Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors," AMER CHEMICAL SOC, 2005.
[23] R. Martel, V. Derycke, C. Lavoie et al., “Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes,” Physical Review Letters, vol. 87, no. 25, pp. 256805, 2001.
[24] T. Meng, C.-Y. Wang, and S.-Y. Wang, “First-principles study of contact between Ti surface and semiconducting carbon nanotube,” Journal of Applied Physics, vol. 102, no. 1, pp. 013709-4, 2007.
[25] A. Ural, Y. Li, and H. Dai, “Electric-field-aligned growth of single-walled carbon nanotubes on surfaces,” Applied Physics Letters, vol. 81, no. 18, pp. 3464-3466, 2002.
[26] S. Huang, X. Cai, and J. Liu, “Growth of Millimeter-Long and Horizontally Aligned Single-Walled Carbon Nanotubes on Flat Substrates,” Journal of the American Chemical Society, vol. 125, no. 19, pp. 5636-5637, 2003.
[27] S. Han, X. Liu, and C. Zhou, “Template-Free Directional Growth of Single-Walled Carbon Nanotubes on a- and r-Plane Sapphire,” Journal of the American Chemical Society, vol. 127, no. 15, pp. 5294-5295, 2005.
[28] D. Yuan, L. Ding, H. Chu et al., “Horizontally Aligned Single-Walled Carbon Nanotube on Quartz from a Large Variety of Metal Catalysts,” Nano Letters, vol. 8, no. 8, pp. 2576-2579, 2008.
[29] S. J. Kang, C. Kocabas, T. Ozel et al., “High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes,” Nat Nano, vol. 2, no. 4, pp. 230-236, 2007.
[30] X. Li, X. Tu, S. Zaric et al., “Selective Synthesis Combined with Chemical Separation of Single-Walled Carbon Nanotubes for Chirality Selection,” Journal of the American Chemical Society, vol. 129, no. 51, pp. 15770-15771, 2007.
[31] R. Krupke, F. Hennrich, H. v. Lohneysen et al., “Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes,” Science, vol. 301, no. 5631, pp. 344-347, July 18, 2003, 2003.
[32] M. S. Arnold, A. A. Green, J. F. Hulvat et al., “Sorting carbon nanotubes by electronic structure using density differentiation,” Nat Nano, vol. 1, no. 1, pp. 60-65, 2006.
[33] P. G. Collins, M. S. Arnold, and P. Avouris, “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown,” Science, vol. 292, no. 5517, pp. 706-709, April 27, 2001, 2001.
[34] G. Zhang, P. Qi, X. Wang et al., “Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction,” Science, vol. 314, no. 5801, pp. 974-977, November 10, 2006, 2006.
[35] W. Y. Lee, C. H. Weng, Z. Y. Juang et al., “Lateral growth of single-walled carbon nanotubes across electrodes and the electrical property characterization,” Diamond and Related Materials, vol. 14, no. 11-12, pp. 1852-1856, 2005.
[36] L. Ding, A. Tselev, J. Wang et al., “Selective Growth of Well-Aligned Semiconducting Single-Walled Carbon Nanotubes,” Nano Letters, vol. 9, no. 2, pp. 800-805, 2009.
[37] Z. Zhang, X. Liang, S. Wang et al., “Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits,” Nano Letters, vol. 7, no. 12, pp. 3603-3607, 2007.
[38] Y. Li, W. Kim, Y. Zhang et al., “Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes,” The Journal of Physical Chemistry B, vol. 105, no. 46, pp. 11424-11431, 2001.
[39] Y. Li, D. Mann, M. Rolandi et al., “Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method,” Nano Letters, vol. 4, no. 2, pp. 317-321, 2004.
[40] Y. Zhang, J. Zhang, H. Son et al., “Substrate-Induced Raman Frequency Variation for Single-Walled Carbon Nanotubes,” Journal of the American Chemical Society, vol. 127, no. 49, pp. 17156-17157, 2005.
[41] Z. Chen, J. Appenzeller, J. Knoch et al., “The Role of Metal−Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors,” Nano Letters, vol. 5, no. 7, pp. 1497-1502, 2005.
[42] A. Javey, and H. Dai, “Regular Arrays of 2 nm Metal Nanoparticles for Deterministic Synthesis of Nanomaterials,” Journal of the American Chemical Society, vol. 127, no. 34, pp. 11942-11943, 2005.
[43] R. Y. Zhang, I. Amlani, J. Baker et al., “Chemical Vapor Deposition of Single-Walled Carbon Nanotubes Using Ultrathin Ni/Al Film as Catalyst,” Nano Letters, vol. 3, no. 6, pp. 731-735, 2003.
[44] Y.-S. Min, E. J. Bae, J. B. Park et al., “Direct photolithographic route to selective growth of single-walled carbon nanotubes using a modified photoresist with ferrocene,” Nanotechnology, no. 1, pp. 116, 2006.
[45] S.-H. H. Coskun Kocabas, Anshu Gaur, Matthew□. Meitl, Moonsub Shim, John□. Rogers,, “Guided Growth of Large-Scale, Horizontally Aligned Arrays of Single-Walled Carbon Nanotubes and Their Use in Thin-Film Transistors,” Small, vol. 1, no. 11, pp. 1110-1116, 2005.
[46] C. Kocabas, M. Shim, and J. A. Rogers, “Spatially Selective Guided Growth of High-Coverage Arrays and Random Networks of Single-Walled Carbon Nanotubes and Their Integration into Electronic Devices,” Journal of the American Chemical Society, vol. 128, no. 14, pp. 4540-4541, 2006.
[47] L. Ding, D. Yuan, and J. Liu, “Growth of High-Density Parallel Arrays of Long Single-Walled Carbon Nanotubes on Quartz Substrates,” Journal of the American Chemical Society, vol. 130, no. 16, pp. 5428-5429, 2008.
[48] C. Kocabas, N. Pimparkar, O. Yesilyurt et al., “Experimental and Theoretical Studies of Transport through Large Scale, Partially Aligned Arrays of Single-Walled Carbon Nanotubes in Thin Film Type Transistors,” Nano Letters, vol. 7, no. 5, pp. 1195-1202, 2007.
[49] A. Lin, N. Patil, R. Koungmin et al., “Threshold Voltage and On–Off Ratio Tuning for Multiple-Tube Carbon Nanotube FETs,” Nanotechnology, IEEE Transactions on, vol. 8, no. 1, pp. 4-9, 2009.
[50] D. Phokharatkul, Y. Ohno, H. Nakano et al., “High-density horizontally aligned growth of carbon nanotubes with Co nanoparticles deposited by arc-discharge plasma method,” Applied Physics Letters, vol. 93, no. 5, pp. 053112, 2008.
[51] 李威養, “國立清華大學,工程與系統科學系博士論文,” 2007.
[52] 吳宏益, “國立清華大學,工程與系統科學系碩士論文 ”, 2007.
[53] 李惇翰, “國立清華大學,工程與系統科學系碩士論文,” 2008.
[54] 鐘宜良, “國立清華大學,工程與系統科學系碩士論文 ”, 2009.
[55] M. Cantoro, S. Hofmann, S. Pisana et al., “Catalytic Chemical Vapor Deposition of Single-Wall Carbon Nanotubes at Low Temperatures,” Nano Letters, vol. 6, no. 6, pp. 1107-1112, 2006.
[56] Y. Zhang, T. Ichihashi, E. Landree et al., “Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods,” Science, vol. 285, no. 5434, pp. 1719-1722, September 10, 1999, 1999.
[57] Y. Zhang, and H. Dai, “Formation of metal nanowires on suspended single-walled carbon nanotubes,” Applied Physics Letters, vol. 77, no. 19, pp. 3015-3017, 2000.
[58] Y. Zhang, N. W. Franklin, R. J. Chen et al., “Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction,” Chemical Physics Letters, vol. 331, no. 1, pp. 35-41, 2000.
[59] C. N. I. Ref: "Atomic Layer Deposition, 24 April 06. <<http://www.cambridgenanotech.com/>>.
[60] M. Radosavljevic, S. Heinze, J. Tersoff et al., “Drain voltage scaling in carbon nanotube transistors,” Applied Physics Letters, vol. 83, no. 12, pp. 2435-2437, 2003.