研究生: |
鍾志韓 Chung, Chih-Han |
---|---|
論文名稱: |
獨立雙開口式二氧化鈦奈米管陣列製備及應用於可見光下光還原二氧化碳 Preparation of Free-Standing Open-Ended TiO2 Nanotube Array and Application in Photoreduction of CO2 under Visible Light |
指導教授: |
凌永健
Ling, Yong-Chien |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 光觸媒 、二氧化鈦奈米管陣列 、二氧化碳 、光還原 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類對於石化能源過度使用的結果,已導致大氣中二氧化碳(CO2)的濃度劇烈增加,造成全球暖化現象愈來愈嚴重,嚴重地影響氣候變遷,導致海平面上升,危害到整個生態環境。因此,對於減少大氣二氧化碳含量已是刻不容緩的事。此外,將二氧化碳捕捉下來,利用光觸媒將其還原成碳氫化合物再利用,不僅能減少大氣中的二氧化碳含量,也能開發出新能源的來源。
本研究透過陽極氧化法,並藉有改變電壓方式,來製備出獨立雙開口式二氧化鈦奈米管陣列(open-ended TiNT),相對於一端封閉的奈米管陣列結構(close-ended TiNT)而言,此流通式奈米管結構,使反應物能更容易進到管柱內部,增加反應物接觸面積。此外,藉有尿素於高溫下會熱裂解產生氨氣,來將氮摻雜到二氧化鈦晶格中(ON-TiNT),進而修飾觸媒能隙以增加對可見光能量的吸收。
本研究以亞甲基藍光降解實驗,測試在紫外光燈照射下的觸媒降解效率,發現OA-TiNT約四小時即可將亞甲基藍完全分解,其光降解效率約為CA-TiNT的1.45倍。光還原二氧化碳效率,在模擬太陽燈照射下,OA-TiNT的甲醇產率約為CA-TiNT的1.7倍,ON-TiNT的產率約為CN-TiNT的1.6倍。顯示出將薄膜底部阻礙層移除後,能增加反應物與觸媒接觸的機會,推論為雙開口奈米管結構具有較好的光還原甲醇產率的原因。
The excessive use of fossil fuels has dramatically increased the concentration of CO2 in the atmosphere. Global warming has become more serious and made a significant impact on the climate change and ecological environment. Therefore, the reduction of atmospheric CO2 is an urgent issue. The use of photocatalyst to convert CO2 into hydrocarbons can not only reduce atmospheric CO2 but also develop new energy sources.
In this study, free-standing open-ended TiO2 nanotube array has been successfully fabricated by raising the voltage at the end of anodization process. Compared with the close-ended structure, the flow-through nanotube structure facilitate the reactants to flow into the inside of the tube. Moreover, in order to absorb more visible light, we doped nitrogen into TiO2 to modify the band gap by annealing under urea ambient (ON-TiNT).
The degradation of TiNT catalyst was tested by the photodegradation of methylene blue solution under UV irradiation. The complete decoloration of methylene blue solution by the OA-TiNT was observed in 4 hours with a degradation efficiency about 1.45 times of the CA-TiNT. For CO2 photoreduction experiment, the methanol yield by OA-TiNT was 1.7 times of the CA-TiNT, whereas ON-TiNT was 1.6 times of the CN-TiNT under Xe lamp irradiation. Our results show that open-ednded TiNT provides the increase of the methanol yield which might be attributed to the increased reaction surface area after removing the bottom cap of close-ended TiNT.
1. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 37, 238.
2. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results. Chemical Review 1995, 95, 735-758.
3. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009, 38 (1), 253-278.
4. Diebold, U., The surface science of titanium dioxide. Surface science reports 2003, 48, 53-229.
5. Carp, O.; Huisman, C. L.; Reller, A., Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry 2004, 32, 33-177.
6. Anpo, M.; Takeuchi, M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis 2003, 216, 505-516.
7. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269-271.
8. O'Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-740.
9. Gopidas, K. R.; Bohorquez, M.; Kamat, P. V., Photophysical and photochemical aspects of coupled semiconductors. charge-transfer processes in colloidal CdS-TiO2, and CdS-AgI systems. The Journal of Physical Chemistry 1990, 94, 6435-6440.
10. Inoue, T. F.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637.
11. Tian, Y.; Tatsum, T., Mechanisms and applications of plasmon -induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society 2005, 127, 7632-7637.
12. Tseng, I. H.; Wu, J. C. S.; Chou, H. Y., Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. Journal of Catalysis 2004, 221 (2), 432-440.
13. Tseng, I. H.; Wu, J. C. S., In chemical states of metal-loaded titania in the photoreduction of CO2. Catalysis Taday 2004, 97, 113-119.
14. Wu, J. C. S.; Wu, T. H.; Chu, T.; Huang, H.; Tsai, D., Application of optical-fiber photoreactor for CO2 photocatalytic reduction. Topics in Catalysis 2008, 47, 131-136.
15. Anpo, M.; Chiba, K., Photocatalytic reduction of CO2 on anchored titanium-oxide catalysts. Journal of Molecular Catalysis 1992, 74, 207-212.
16. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M., Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. The Journal of Physical Chemistry B 1997, 101, 2632-2636.
17. Hwang, J. S.; Chang, J, S.; Park, S. E.; Ikeue, K.; Anpo M., Photoreduction of carbon dioxide on surface functionalized nanoporous catalysts. Topics in Catalysis 2005, 35, 311-319.
18. Sasirekha, N.; Basha, S. J. S.; Shanthi, K., Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Applied Catalysis B 2006, 62, 169-180.
19. Yu, Y.; Yu, J. C.; Yu, J. G.; Kwok, Y. C.; Che, Y. K.; Zhao, J. C.; Ding, L.; Ge, W. K.; Wong, P. K., Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotube. Applied Catalysis A 2005, 289, 186-196.
20. Xia, X. H.; Jia, Z. H.; Yu, Y.; Liang, Y.; Wang, Z.; Ma, L. L., Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 2007, 45 (4), 717-721.
21. Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A., High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Letters 2009, 9,731-737.
22. Zwilling, V.; Ceretti, E. D.; Forveille, A. B., Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochimica Acta 1999, 45(6), 921-929.
23. Zwilling, V.; Ceretti, E. D.; Forveille, A. B.; David D.; Perrin, M. Y., Aucouturier, M., Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis 1999, 27, 629-637.
24. Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C., Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research 2001, 16, 3331-3334.
25. Cai, Q.; Paulose, M.; Varghese, O. K.; Grimes C. A., The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. Journal of Materials Research 2005, 20, 230-236.
26. Prakasam, H. E.; Shankar, K.; Paulose, M.; Grimes C. A., A new benchmark for TiO2 nanotube array growth by anodization. The Journal of Physical Chemistry C 2007, 111, 7235-7241.
27. Paulose, M.; Prakasam, H. E.; Varghese, O. K.; Peng, L.; Popat, K. C.; Mor, G. K.; Desai, T. A.; Grimes, C. A., TiO2 Nanotube arrays of 1000 μm length by anodization of titanium foil: Phenol red diffusion The Journal of Physical Chemistry C 2007, 111, 14992-14997.
28. Albu, S. R.; Kim, D.; Schmuki, P., Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angewandte Chemie-International Edition 2008, 47 (10), 1916-1919.
29. Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A., A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells 2006, 90 (14), 2011-2075.
30. Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Highly-ordered TiO2 nanotube arrays up to 220 mu m in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 2007, 18 (6), 65707.
31. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Enhanced photocleavage of water using titania nanotube arrays Nano Letters 2005, 5, 191-195.
32. Varghese, O. K.; Yang, X.; Kendig, J.; Paulose, M.; Zeng, K.; Palmer, C.; Ong, K. G.; Grimes, C. A., A transcutaneous hydrogen sensor: from design to application. Sensor Letters 2006, 4, 120-128.
33. Varghese, O. K.; Gong, D.; Paulose, M.; Ong, K. G.; Grimes, C. A., Hydrogen sensing using titania nanotubes. Sensors and Actuators B 2003, 93, 338-344.
34. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters 2006, 6, 215-218.
35. Paulose, M.; Shankar, K.; Varghese, O. K.; Mor, G. K.; Hardin,B.; Grimes, C. A., Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 2006, 17, 1446-1448.
36. Peng, L.; Mendelsohn, A. D.; LaTempa, T. J.; Yoriya, S.; Grimes, C. A.; Desai, T. A., Long-term small molecule and protein elution from TiO2 nanotubes. Nano Letters 2009, 9, 1932-1936.
37. Paulose, M.; Peng, L.; Popat, K. C.; Varghese, O. K.; LaTempa, T. J.; Bao, N.; Desai, T. A.; Grimes, C. A., Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. Journal of Membrane Science 2008, 319, 199-205.
38. Chen, Q.; Xu, D. s.; Wu, Z. Y.; Liu Z. F., Free-standing TiO2 nanotube arrays made by anodic oxidation and ultrasonic splitting. Nanotechnology 2008, 19, 365708.
39. Wang, J.; Lin, Z., Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chemistry of Materials 2008, 20, 1257-1261.
40. Albu, S. P.; Ghicov, A.; Macak, J. M.; Hahn, R.; Schmuki, P., Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Letters 2007, 7 (5), 1286-1289.
41. Lim, J. H.; Hong, S. Y.; Kang, S. J.; Doh, H. J.; Song, J.; Choi, J. R.; Chung, K. H.; Choi, J., Electrochemical determination of whole blood clotting time by using nanodot arrays. Electrochemistry Communications 2009, 11, 2141-2144.
42. Lin, C. J.; Yu, Y. H.; Liou, Y. H., Free-standing TiO2 nanotube array films sensitized with CdS as highly active solar light-driven photocatalysts. Applied Catalysis B: Environmental 2009, 93, 119-125.
43. Lin, C. J.; Yu, W.Y.; Lu, Y. T.; Chien, S. H., Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications. Chemical Communications 2008, 6031-6033.
44. Chen, Q.; Xu, D. S., Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. The Journal of Physical Chemistry C 2009, 113, 6310-6314.
45. Banerjee, S.; Misra, M.; Mohapatra, S. K.; Howard, C.; Mohapatra, S. K.; Kamilla, S. K., Formation of chelating agent driven anodized TiO2 nanotubular membrane and its photovoltaic application. Nanotechnology 2010, 21, 145201.
46. Kant, K.; Losic, D., A simple approach for synthesis of TiO2 nanotubes with through-hole morphology. physica status solidi (RRL) - Rapid Research Letters 3 2009, 5, 139-141.
47. Jo, Y.; Jung, I.; Lee, I.; Choi, J.; Tak, Y., Fabrication of through-hole TiO2 nanotubes by potential shock. Electrochemistry Communications 2010, 12, 616-619.
48. Li, S.; Zhang, G., One-step realization of open-ended TiO2 nanotube arrays by transition of the anodizing voltage. Journal of the Ceramic Society of Japan 2010, 118 (4), 291-294.
49. Varghese, O. K.; Gong, D. W.; Paulose, M.; Grimes, C. A.; Dickey, E. C., Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 2003, 18 (1), 156-165.
50. Vitiello, R. P.; Macak, J. M.; Ghicov, A.; Tsuchiya, H.; Dick, L. F. P.; Schmuki, P., N-doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochemistry Communications 2006, 8, 544-548.
51. Schaber, P. A.; Colson, J.; Higgins, S.; Thielen, D.; Anspach, B.; Brauer, J., Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochimica Acta 2004, 424, 131-142.
52. 鍾政圻,『吸收可見光之二氧化鈦奈米管陣列製備及應用於光還原二氧化碳』碩士論文,國立清華大學,97年。
53. Yoneyama, H.; Toyoguchi, Y.; Tamura, H., Reduction of methylene blue on illuminated titanium dioxide in methanolic and aqueous solution. Journal of Physical Chemistry 1972, 76, 3460-3464.
54. Chen, C. C.; Jehng, W. D.; Li, L. L.; Diau, E. W. G., Enhanced efficiency of dye-sensitized solar cells using anodic titanium oxide nanotube arrays. Journal of The Electrochemical Society 2009, 156(9), C304-C312.
55. Yu, J.; Zhao, X.; Zhao, Q., Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method, Thin Solid Films 2000, 379, 7-14.
56. Xu, P.; Mi, L.; Wang, P. N., Improved optical response for N-doped anatase TiO2 films prepared by pulsed laser deposition in N2/NH3/O2 mixture. Journal of Crystal Growth 2006, 289 (2), 433-439.
57. Emeline, A. V.; Vyacheslav N. V.; Rybchuk, K.; Serpone. N., Visible-light-active titania photocatalysts: the case of N-doped TiO2s-properties and some fundamental issues. International Journal of Photoenergy 2008, 258394.
58. Lin, C. J.; Yu, W. Y.; Chien, S. H., Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry 2010, 20, 1073-1077.
59. 徐文合,『奈米碳管-二氧化鈦複合式觸媒光催化還原二氧化碳』碩士論文,國立清華大學,95年。
60. 李鎮宇,『TiO2/SiO2多層奈米薄膜製備及其應用在二氧化碳光還原之研究』碩士論文,國立清華大學,95年。