簡易檢索 / 詳目顯示

研究生: 李宜真
Lee, I-Chen
論文名稱: 加速試驗之統計設計與分析
Statistical Planning of Accelerated Tests
指導教授: 曾勝滄
Tseng, Sheng-Tsaing
口試委員: 徐南蓉
Hsu, Nan-Jung
鄭少為
Cheng, Shao-Wei
洪志真
Horng, Jyh-Jen
樊采虹
Fan, Tsai-Hung
鄭順林
Jeng, Shuen-Lin
學位類別: 博士
Doctor
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 100
中文關鍵詞: 指數分散衰變模型加速衰變試驗加速壽命試驗疲勞實驗最佳驗配置依序設計貝氏分析
外文關鍵詞: Exponential dispersion degradation model, Accelerated degradation tests, Accelerated life tests, Fatigue tests, Optimal design, Sequential design, Bayesian test planning
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對高可靠產品的壽命推估問題,加速試驗(Accelerated Test)是業界常用的研究方法。加速試驗因資料的收集型態不同,可區分為加速壽命試驗 (Accelerated Life Test) 及加速衰變試驗 (Accelerated Degradation Test)。一般而言,執行加速試驗的成本非常昂貴,因此如何在成本限制下,有效率地決定實驗配置,方可獲得產品壽命的精確估計值是產品製造商的重要決策問題。
    本研究針對加速試驗之最適配置問題進行研究,內容包含以下三個部分:
    (i) 首先我們提出指數分散 (exponential dispersion, ED) 衰變模型來描述高可靠度產品的品質特徵值之衰變路徑,其優點不僅涵蓋 Wiener、Gamma 或Inverse Gaussian 等常用的連續型衰變模型,亦可描述離散型之衰變路徑如compound Poisson 模型。欲使產品壽命的第q 百分位數估計值之近似變異數極小化,在兩個與三個應力的加速衰變試驗中,針對ED加速衰變模型,探討加速衰變試驗之樣本數配置及應力水準的最適設計問題。
    (ii) 當加速衰變模型為指數分散加速衰變模型時,在實驗之總成本限制下,本研究更進一步提出一演算法來決定加速衰變試驗的總樣本數、量測次數及總量測時間等之最適決策問題,方可獲得最精確的產品壽命估計值。
    (iii) 文獻上有關加速試驗之最適配置問題,大多假設模型中之參數為已知的情況下進行研究;然而,模型中的真正參數值在實際應用中大多為未知值。藉由實驗者的實務經驗或現有的實驗資料,本研究利用貝氏分析 (Bayesian analysis) 之方法,提出一依序設計(sequential design)之策略以執行有效率之加速壽命試驗。本研究並將此方法應用至具有輕質量、高強度、高耐度等優點的高分子複合材料(polymer composite materials)之加速疲勞試驗(accelerated fatigue tests),以有效率地收集材料之失效資料進而分析並預測其在實際應用上的表現。


    Accelerated tests are widely used to assess the lifetime information for highly reliable products. Due to different types of collected data, the accelerated tests can be further classified as accelerated life tests (ALTs) and accelerated degradation tests (ADTs). For highly reliable products, conducting an accelerated test is very costly. To obtain the precise prediction of lifetime information, how to design an efficient planning under cost constraints is a critical task. For the planning of accelerated tests, this study includes the following three topics:
    (i) Several researchers have attempted to address the problem of determining the sample size allocation and the settings of stress levels, but their results have been based only on specific degradation models. Therefore, they lack a unified approach toward general degradation models. We first proposes a class of exponential dispersion (ED) degradation models which include some special cases such as the Wiener, gamma, and inverse Gaussian processes. Assuming that the underlying degradation path comes from the ED class, we analytically derive the optimum allocation rules by minimizing the asymptotic variance of the estimated q quantile of product’s lifetime for two-level and three-level ADT allocation problems no matter the testing stress levels are prefixed.
    (ii) Assuming that the underlying degradation path comes from the ED class, we further determine the total sample size, the number of measurements within a degradation path, and the total testing times simultaneously under the constraints of total experimental cost. For this constrained optimization, we propose an algorithm to determine the optimum design by minimizing the asymptotic variance of the q quantile of the product’s lifetime.
    (iii) There has been a lot of development in optimum test planning, most of the methods assume that the true parameter values are known. However, in reality, the true model parameters may depart from the planning values. Therefore, we use Bayesian framework and propose a sequential test planning strategy for ALTs. Furthermore, we apply the proposed strategy to the accelerated cyclic fatigue tests of polymer composite materials which are lightweight and comparable levels of strength and endurance. We also use extensive simulation to study the properties of the proposed sequential test planning strategy.

    1 Introduction . . . . . . . . . . . . . . . . 1 1.1 Background .................................... 1 1.2 Motivation..................................... 2 1.3 The Layout of the Dissertation ......................... 3 2 Literature Review . . . . . . . . . . . . . . . . 6 2.1 Planning ALTs and Related Literature ..................... 6 2.2 Planning ADTs and Related Literature..................... 7 2.2.1 Degradation Models ........................... 7 2.2.2 Planning Accelerated Degradation Tests . . . . . . . . . . . . . . . . 8 3 Optimum Allocation Rule for Accelerated Degradation Tests with a Class of Exponential Dispersion Degradation Models . . . . . . . . . . . . . . . . 10 3.1 A Class of Exponential Dispersion Degradation Models . . . . . . . . . . . . 10 3.2 Assumptions and Problem Formulation..................... 11 3.3 Optimum ED-ADT Allocation Rule....................... 13 3.3.1 Expression of Asymptotic Variance of ξˆ . . . . . . . . . . . . . . . . 13 3.3.2 Optimum ED-ADT Allocation Rule When All Stresses Are Prefixed . 15 3.3.3 Optimum ED-ADT Allocation Rule for k = 2 When One Stress Level Is Prefixed................................. 18 3.4 Two Illustrative Examples ............................ 19 3.4.1 Example1: Stress Relaxation Data (Yang, 2007) . . . . . . . . . . . 19 3.4.2 Example2: DeviceBData(Meeker & Escobar, 1998) . . . . . . . . . 23 3.4.3 Optimum Two-Level Allocation Rule When One Stress Level Is Free to Be Optimized ............................. 25 3.5 Efficiency Gain Compared to Non-optimum Allocation Rules . . . . . . . . . 28 3.5.1 Comparison With Two Well-Known Plans Under k = 2 . . . . . . . . 28 3.5.2 Comparison With Some Well-Known Compromise Plans for k= 3 . . 29 3.6 Conclusion..................................... 30 4 Planning Accelerated Degradation Tests under the Constraint of Total Cost 32 4.1 Problem Formulation............................... 32 4.2 First Passage Time of an ED-ADT Model ................... 34 4.3 Planning Methodology .............................. 38 4.3.1 The Exact Expression of Asymptotic Variance . . . . . . . . . . . . . 38 4.3.2 The Constrained Optimum Plan..................... 40 4.4 An Algorithm for Finding the Optimum Test Plan. . . . . . . . . . . . . . . 41 4.5 Illustrative Example ............................... 44 4.5.1 Stress Relaxation Data Revisited .................... 44 4.5.2 Test Plans under Different Degradation Models . . . . . . . . . . . . 45 4.5.3 Relative Efficiencies for the Case of Equal Frequency under All Stress Levels ................................... 48 4.6 Sensitivity Analysis................................ 50 4.7 Conclusion..................................... 53 5 Sequential Test Planning for Polymer Composites . . . . . . . . . . . . . . . . 54 5.1 Introduction.................................... 54 5.1.1 Background ................................ 54 5.1.2 Motivation................................. 56 5.2 Model ....................................... 56 5.2.1 Physical and Statistical Models ..................... 56 5.2.2 Maximum Likelihood Estimation and Asymptotic Variance . . . . . . 58 5.3 Test Planning Methodology ........................... 59 5.3.1 Prior Distribution............................. 60 5.3.2 Criterion for Sequential Bayesian Designs. . . . . . . . . . . . . . . . 60 5.3.3 Design Optimization ........................... 61 5.4 Application on Polymer Composites Test Planning . . . . . . . . . . . . . . 64 5.4.1 Parameter Estimation .......................... 64 5.4.2 Sequential Bayesian Design with Limited Number of Historical Data . 67 5.5 Design Performance Evaluation ......................... 69 5.5.1 Simulation Procedure........................... 70 5.5.2 Simulation Results ............................ 71 5.5.3 Comparison on Different Historical Data . . . . . . . . . . . . . . . . 74 5.6 Conclusion..................................... 75 6 Conclusion and the Topics for Future Research . . . . . . . . . . . . . . . . 77 Appendices . . . . . . . . . . . . . . . . 79 Appendix A . . . . . . . . . . . . . . . . 80 A.1 The proof of Equation (3.7) ........................... 80 A.2 The proof of Result2............................... 81 A.3 The proof of Result3............................... 84 A.4 The proof of Result4............................... 84 Appendix B . . . . . . . . . . . . . . . . 87 B.1 Proof of Step 5 in Section 4.4 .......................... 87 B.2 Sensitivity Analysis on Estimated Values of λ . . . . . . . . . . . . . . . . . 88 Appendix C . . . . . . . . . . . . . . . . 91 C.1 Formulation of Fisher information matrix.................... 91 C.2 Performance of MCMC.............................. 94 Bibliography.............................. 95

    [1] Abdel-Hameed, M. (1975). A gamma wear process. IEEE Transactions on Reliability, 24(2), 152–153.
    [2] Azadi, N. A., Fearnhead, P., Ridall, G., & Blok, J. H. (2014). Bayesian sequential experimental design for binary response data with application to electromyographic experiments. Bayesian Analysis, 9(2), 287–306.
    [3] Basu, A. K., & Wasan, M. (1974). On the first passage time processes of brownian motion with positive drift. Scandinavian Actuarial Journal, 1974(3), 144–150.
    [4] Bigi, G., & Castellani, M. (2004). Uniqueness of kkt multipliersin multiobjective optimization. Applied mathematics letters, 17(11), 1285–1290.
    [5] Birnbaum, Z., & Saunders, S. C. (1969). A new family of life distributions. Journal of applied probability, 6(2), 319–327.
    [6] Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: A review. Statistical Science, 10(3), 273–304.
    [7] Chao, M. (1999). Degradation analysis and related topics: some thoughts and a review. Proceedings of the National Science Council, Republic of China. Part A, Physical science and engineering, 23(5), 555–566.
    [8] Chernoff, H. (1962). Optimal accelerated life designs for estimation. Technometrics, 4(3), 381–408.
    [9] Chhikara, R. (1988). The inverse gaussian distribution: Theory: Methodology, and applications. CRC Press.
    [10] Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J., & Knuth, D. E. (1996). On the lambertw function. Advances in Computational mathematics, 5(1), 329–359.
    [11] Doksum, K. A., & Hbyland, A. (1992). Models for variable-stress accelerated life testing experiments based on wener processes and the inverse gaussian distribution. Technometrics, 34(1), 74–82.
    [12] Dror, H. A., & Steinberg, D. M. (2008). Sequential experimental designs for generalized linear models. Journal of the American Statistical Association, 103(481), 288–298.
    [13] Dunn, P. K. (2014). tweedie: Tweedie exponential family models [Computer software manual]. (R package version 2.2.1)
    [14] E739-10, A. (2010). Standard practice for statistical analysis of linear or linearized stress- life (SN) and strain-life (ε-N) fatigue data. ASTM International, West Conshohocken, PA, USA.
    [15] Epaarachchi, J. A., & Clausen, P. D. (2003). An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies. Composites Part A: Applied science and manufacturing, 34(4), 313–326.
    [16] Hong, Y., King, C., Zhang, Y., & Meeker, W. Q. (2015). Bayesian life test planning for the log-location-scale family of distributions. Journal of Quality Technology, 47(4), 336–350.
    [17] Hong, Y., Ma, H., & Meeker, W. Q. (2010). A tool for evaluating time-varying- stress accelerated life test plans with log-location-scale distributions. Reliability, IEEE Transactions on, 59(4), 620–627.
    [18] Jorgensen, B. (1997). The theory of dispersion models. CRC Press.
    [19] King, C., Hong, Y., DeHart, S. P., DeFeo, P. A., & Pan, R. (2016). Planning fatigue tests for polymer composites. Journal of Quality Technology, tentatively accepted.
    [20] Lawless, J., & Crowder, M. (2004). Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Analysis, 10(3), 213–227.
    [21] Lawless, J. F. (2011). Statistical models and methods for lifetime data. John Wiley & Sons. Lim, H. (2015). Optimum accelerated degradation tests for the gamma degradation process case under the constraint of total cost. Entropy, 17(5), 2556–2572.
    [22] Lim, H., & Yum, B.-J. (2011). Optimal design of accelerated degradation tests based on wiener process models. Journal of Applied Statistics, 38(2), 309–325.
    McLeish, D., & Tosh, D. (1990). Sequential designs in bioassay. Biometrics, 46(1), 103–116.
    [23] Meeker, W. Q. (1984). A comparison of accelerated life test plans for weibull and lognormal distributions and type i censoring. Technometrics, 26(2), 157–171.
    Meeker, W. Q., & Escobar, L. A. (1998). Statistical methods for reliability data. John Wiley & Sons.
    [24] Meeker, W. Q., & Hahn, G. J. (1977). Asymptotically optimum over-stress tests to estimate the survival probability at a condition with a low expected failure probability. Technometrics, 19(4), 381–399.
    [25] Meeker, W. Q., & Hahn, G. J. (1985). How to plan an accelerated life test: Some practical guidelines. ASQC Statistics Division.
    [26] Nelson, W. B. (2009). Accelerated testing: statistical models, test plans, and data analysis. John Wiley & Sons.
    [27] Pan, R., & Yang, T. (2014). Design and evaluation of accelerated life testing plans with dual objectives. Journal of Quality Technology, 46(2), 114–126.
    [28] Park, C., & Padgett, W. (2005). Accelerated degradation models for failure based on geometric brownian motion and gamma processes. Lifetime Data Analysis, 11(4), 511– 527.
    [29] Park, C., & Padgett, W. J. (2006). Stochastic degradation models with several accelerating variables. IEEE Transactions on Reliability, 55(2), 379–390.
    [30] Peng, C.-Y. (2012). A note on optimal allocations for the second elementary symmetric function with applications for optimal reliability design. Naval Research Logistics (NRL), 59(3-4), 278–284.
    [31] Peng, C.-Y. (2015). Inverse gaussian processes with random effects and explanatory variables for degradation data. Technometrics, 57(1), 100–111.
    [32] R Development Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria.
    [33] Roy, A., Ghosal, S., & Rosenberger, W. F. (2009). Convergence properties of sequential bayesian d-optimal designs. Journal of Statistical Planning and Inference, 139(2), 425– 440.
    [34] SAS Institute Inc. (2012). Using JMP 10. Cary, NC: SAS Institute Inc.
    Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.
    [35] Singpurwalla, N. D. (1995). Survival in dynamic environments. Statistical Science, 10(1), 86–103.
    [36] Tsai, C.-C., Tseng, S.-T., & Balakrishnan, N. (2012). Optimal design for degradation tests based on gamma processes with random effects. Reliability, IEEE Transactions on, 61(2), 604–613.
    [37] Tsai, C.-C., Tseng, S.-T., Balakrishnan, N., & Lin, C.-T. (2013). Optimal design for accelerated destructive degradation tests. Quality Technology & Quantitative Management, 10(3), 263–276.
    [38] Tseng, S.-T., & Lee, I.-C. (2016). Optimum allocation rule for accelerated degradation tests with a class of exponential-dispersion degradation models. Technometrics, 58(2), 244–254.
    [39] Tseng, S.-T., Tsai, C.-C., & Balakrishnan, N. (2011). Optimal sample size allocation for accelerated degradation test based on wiener process. In Methods and applications of statistics in engineering, quality control, and the physical sciences (pp. 330–347).
    [40] Tweedie, M. (1984). An index which distinguishes between some important exponential families. In Statistics: Applications and new directions: Proc. indian statistical institute golden jubilee international conference (pp. 579–604).
    [41] Wang, X., & Xu, D. (2010). An inverse gaussian process model for degradation data. Technometrics, 52(2), 188–197.
    [42] Whitmore, G., & Schenkelberg, F. (1997). Modelling accelerated degradation data using wiener diffusion with a time scale transformation. Lifetime data analysis, 3(1), 27–45.
    [43] Wu, C. (1985). Asymptotic inference from sequential design in a nonlinear situation. Biometrika, 72(3), 553–558.
    [44] Yang, G. (2007). Life cycle reliability engineering. John Wiley & Sons.
    [45] Ye, Z.-S., Chen, L.-P., Tang, L. C., & Xie, M. (2014). Accelerated degradation test planning using the inverse gaussian process. Reliability, IEEE Transactions on, 63(3), 750–763.
    [46] Ye, Z.-S., & Chen, N. (2014). The inverse gaussian process as a degradation model. Technometrics, 56(3), 302–311.
    [47] Yu, H.-F., & Tseng, S.-T. (1999). Designing a degradation experiment. Naval Research Logistics (NRL), 46(6), 689–706.
    [48] Zhang, Y., & Meeker, W. Q. (2005). Bayesian life test planning for the weibull distribution with given shape parameter. Metrika, 61(3), 237–249.
    [49] Zhang, Y., & Meeker, W. Q. (2006). Bayesian methods for planning accelerated life tests. Technometrics, 48(1), 49–60.
    [50] Zhu, L., Dasgupta, T., & Huang, Q. (2014). A D-optimal design for estimation of parameters of an exponential-linear growth curve of nanostructures. Technometrics, 56(4), 432–442.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE