簡易檢索 / 詳目顯示

研究生: 徐子芳
論文名稱: Knock down ADAR3對斑馬魚胚體發育的影響
指導教授: 周姽嫄
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 60
中文關鍵詞: 斑馬魚
外文關鍵詞: ADAR3
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A-to-I RNA editing是一種改變RNA序列的後轉錄修飾機制,可以增加基因產物的複雜性。ADAR (adenosine deaminase that act on RNA)是負責催化此一反應的酵素,在脊椎動物表現三種ADAR,分別為ADAR1、ADAR2、ADAR3。現今關於ADAR3活性及生理功能的研究相當有限。本論文以ADAR3 i2/e3 antisense morpholino(針對intron 2/exon 3連接處設計)降低ADAR3表現,研究ADAR3 knock down對斑馬魚胚體發育的影響。我們觀察到adar3 morphant胚體發育不正常,異常的表現型包括身體較小、中腦隆起、第四腦腔隆起膨大、對碰觸不敏感、最慢在胚體發育七天內死亡。為進一步瞭解ADAR3 i2/e3 antisense morpholino如何影響斑馬魚胚體發育,我們進行ngn1、neuroD、zNav1.6、otx2和p53的原位雜合染色,結果顯示這些基因在morphant腦部的表現量不同於野生種胚體。以acridine orange染色追蹤細胞凋亡,發現morphant的細胞凋亡多於野生種胚體,且在24 hpf為全身性,36 hpf則侷限在腦部。即時定量PCR分析顯示24 hpf morphant的neuroD mRNA表現量顯著下降,到了36 hpf其他神經相關基因:ngn1、gaba、grin1β,以及neuroD mRNA的表現量都有顯著下降。與細胞凋亡相關的基因,p53和mdm2,在morphant的表現量有非常顯著的上升。cxcr4b原位雜合染色顯示morphant PLL (posterior lateral line) primordium的移動沒有受到影響,但DiAsp染色顯示神經丘發育不完全。本研究結果顯示knock down ADAR3會影響斑馬魚早期腦部的發育。


    Adenosine deaminases acting on RNA (ADARs) convert specific adenosines to inosines on dsRNA, which increase complexities of a gene product. ADAR3 is the third member of ADAR gene family; however the RNA editing activity of ADAR3 has not been demonstrated. To elucidate the biological functions of the ADAR3 during zebrafish development, the expression of adar3 was perturbed by the morpholino antisense oligonucleotide. The adar3 knock-down fish (morphant) developed abnormally. The abnormal phenotypes include small bodies, bulging midbrain, enlarged forth brain ventrical, touch insensitive, and death before 7 dpf (days post fertilization). I In situ hybridization showed that the expression of several neuronal markers differed in the brain regions between morphant and wildtype embryos. An elevated level of acridine orange positive granules was observed in the head and trunk of 24 hpf adar3 morphants, and an increase of apoptosis restricted to the head region at 36 hpf. The result of quantitative RT-PCR analyses revealed that the expression of neuroD in the 24 hpf and 36 hpf morphants was significantly reduced. In addition, expressions of many neuron-specific genes were significantly reduced in the 36 hpf morphant. The expressions of p53 and mdm2 mRNA increased dramatically in the 24 hpf and 36 hpf morphants. In situ hybridization of cxcr4b revealed that the migration of PLL (posterior lateral line) primordium was not effected in the morphants, but the results of activity stain suggested that the development of neuromasts was abnormal. These data suggested that ADAR3 participated in the early brain development of zebrafish.

    英文摘要…………………………...………………………………………………...Ⅰ 中文摘要……………………………………………………………………………..Ⅱ 前言……………………………………………………………………………………1 材料與方法………………………………………………………………………..…..6 結果…………………………………………………………………………………..13 討論…………………………………………………………………………………..24 參考文獻……………………………………………………………………………..31 附表…………………………………………………………………………………..36 附圖…………………………………………………………………………………..38

    Bass, B. L. (2002). RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71, 817-846
    Blader, P., Fischer, N., Gradwohl, G., Guillemot, F., Stra¨hle, U. (1999). The activity of neurogenin1 is controlled by local cues in the zebrafish. Development 124, 4557-4569.
    Boyl, P. P., Signore, M., Annino, A., Barbera, J. P., Acampora, D., Simeone, A. (2001). Otx genes in the development and evolution of the vertebrate brain. Int J Dev Neurosci 19, 353-363.
    Burgess, D. L., Kohrman, D. C., Galt, J., Plummer, N. W., Jones, J. M., Spear, B., Meisler, M. H. (1995). Mutation of a new sodium channel gene, Scn8a, in the mouse mutant 'motor endplate disease. Nat Genet 10, 461-465.
    Carron, C., Bourdelas, A., Li, H. Y., Boucaut, J. C., Shi, D. L. (2005). Antagonistic interaction between IGF and Wnt/JNK signaling in convergent extension in Xenopus embryo. Mech Dev 122, 1234-1247.
    Chen, C. X., Cho, D. S., Wang, Q., Lai, F., Carter, K. C., Nishikura, K. (2000). A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. Rna 6, 755-767.
    Chen, J., Ruan, H., Ng, S. M., Gao, C., Soo, H. M. (2005). Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebra.sh. Genes Dev 19, 2900-2911.
    Chong, S. W., Emelyanov, A., Gong, Z., Korzh, V. (2001). Expression pattern of two zebrafish genes, cxcr4a and cxcr4b. Mech Dev. Dec 109, 347-354.
    Cole, L. K., Ross, L. S. (2001). Apoptosis in the developing zebrafish embryo. Dev Biol 240, 123-142.
    Collazo, A., Fraser, S. E., Mabee, P. M. (1994). A dual embryonic origin for vertebrate mechanoreceptors. Science 264, 426-430.
    Cornell, R. A., Eisen, J. S. (2002). Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function. Development 129, 2639-2648.
    David, N. B., Sapede, D., Saint-Etienne, L., Thisse, C., Thisse, B., Dambly-Chaudiere, C., Rosa, F. M., Ghysen, A. (2002). Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc Natl Acad Sci U S A 99, 16297-16302.
    Eivers, E., McCarthy, K., Glynn, C., Nolan, C. M., Byrnes, L. (2004). Insulin-like growth factor (IGF) signalling is required for early dorsoanterior development of the zebrafish embryo. Int J Dev Biol 48, 1131-1140.
    Ekker, S. C., Larson, J. D. (2001). Morphant technology in model developmental systems. Genesis 30, 89-93.
    Feng, Y., Sansam, C.L., Singh, M., Emeson, R.B. (2006). Altered RNA editing in mice lacking ADAR2 autoregulation. Mol Cell Biol 26, 480-488.
    Furutani-Seiki, M., Jiang, Y. J., Brand, M., Heisenberg, C. P., Houart, C., Beuchle, D., van Eeden, F. J., Granato, M., Haffter, P., Hammerschmidt, M., Kane, D. A., Kelsh, R. N., Mullins, M. C., Odenthal, J., Nusslein-Volhard, C. (1996). Neural degeneration mutants in the zebrafish, Danio rerio. Development 123, 229-239.
    George, C. X., Samuel, C. E. (1999). Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci U S A 96, 4621-4626.
    Ghysen, A., Dambly-Chaudiere, C. (2004). Development of the zebrafish lateral line. Curr Opin Neurobiol 14, 67-73.
    Glu¨ cksmann, A. (1951). Cell deaths in normal vertebrate ontogeny. Biol Rev 26, 59-86.
    Hartner, J. C., Schmittwolf, C., Kispert, A., Muller, A. M., Higuchi, M., Seeburg, P. H. (2004). Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem 279, 4894-4902.
    Herbert, A., Alfken, J., Kim, Y. G., Mian, I. S., Nishikura, K., and Rich, A. (1997). A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc Natl Acad Sci U S A 94, 8421-8426.
    Higuchi, M., Maas, S., Single, F. N., Hartner, J., Rozov, A., Burnashev, N., Feldmeyer, D., Sprengel, R., Seeburg, P. H. (2000). Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78-81.
    Higuchi, M., Single, F. N., Kohler, M., Sommer, B., Sprengel, R., Seeburg, P. H. (1993). RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75, 1361-1370.
    Itoh, M., Chitnis, A. B. (2001). Expression of proneural and neurogenic genes in the zebrafish lateral line primordium correlates with selection of hair cell fate in neuromasts. Mech Dev 102, 263-266.
    Keegan, L. P., Gallo, A., O'Connell, M. A. (2001). The many roles of an RNA editor. Nat Rev Genet 2, 869-878.
    Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310.
    Korzh, V., Sleptsova, I., Liao, J., He, J., Gong, Z. (1998). Expression of zebrafish bHLH genes ngn1 and nrd defines distinct stages of neural differentiation. Dev Dyn 213, 92-104.
    Jacobson, M. D., Weil, M., and Raff, M. C. (1997). Programmed cell death in animal development. Cell 88, 347-354.
    Langheinrich, U., Hennen, E., Stott, G., Vacun, G. (2002). Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol 12, 2023-2028.
    Li, Y., Allende, M. L., Finkelstein, R., Weinberg, E. S. (1994). Expression of two zebrafish orthodenticle-related genes in the embryonic brain. Mech Dev 48, 229-44.
    Lomeli, H., Mosbacher, J., Melcher, T., Hoger, T., Geiger, J. R., Kuner, T., Monyer, H., Higuchi, M., Bach, A., Seeburg, P. H. (1994). Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266, 1709-1713.
    Maas, S. and Rich, A. (2000). Changing genetic information through RNA editing. Bioessays 22, 790-802.
    Maas, S., Rich, A., Nishikura, K. (2003). A-to-I RNA editing: recent news and residual mysteries. J Biol Chem 278, 1391-1394.
    Mercier, P., Simeone, A., Cotelli, F., Boncinelli, E. (1995). Expression pattern of two otx genes suggests a role in specifying anterior body structures in zebrafish. Int J Dev Biol 39, 559-73.
    Melcher, T., Maas, S., Herb, A., Sprengel, R., Higuchi, M., Seeburg, P. H. (1996). RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J Biol Chem 271, 31795-31798.
    Metcalfe, W. K., Kimmel, C. B., Schabtach, E. (1985). Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233, 377-389.
    Miyata, T., Maeda, T., Lee, J. E., (1999). NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13, 1647-1652.
    Naya, F. J., Huang, H. P., Qiu, Y., Mutoh, H., DeMayo, F. J., Leiter, A. B., Tsai, M. J., (1997). Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes Dev 11, 2323-2334.
    Nie, Y., Zhao, Q., Su, Y., Yang, J. H. (2004). Subcellular distribution of ADAR1 isoforms is synergistically determined by three nuclear discrimination signals and a regulatory motif. J Biol Chem 279, 13249-13255.
    Palladino, M. J., Keegan, L. P., O'Connell, M. A., Reenan, R. A. (2000). A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102, 437-449.
    Patterson, J. B., Samuel, C. E. (1995). Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol 15, 5376-5388.
    Pera, E.M., Ikeda, A., Eivers, E., De Robertis, E. M. (2003). Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 17, 3023-3028.
    Raff, M. C., Barres, B. A., Burne, J. F., Coles, H. S., Ishizaki, Y., Jacobson, M. D. (1993). Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695-700.
    Raman, I. M., Sprunger, L. K., Meisler, M. H., Bean, B. P. (1997). Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19, 881-891.
    Ribera, A. B., Nüsslein-Volhard, C. (1998). Zebrafish touch-insensitive mutants reveal an essential role for the developmental regulation of sodium current. J Neurosci 18, 9181-9191.
    Robu, M. E., Larson, J. D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S. A., Ekker, S. C. (2007). p53 activation by knockdown technologies. PLoS Genet 3, 787-801.
    Rueter, S. M., Dawson, T. R., Emeson, R. B. (1999). Regulation of alternative splicing by RNA editing. Nature 399, 75-80.
    Sarrazin, A. F., Villablanca, E. J., Nuñez, V. A., Sandoval, P. C., Ghysen, A., Allende, M. L. (2006). Proneural gene requirement for hair cell differentiation in the zebrafish lateral line. Dev Biol 295, 534-545.
    Simeone, A., Puelles, E., Acampora, D. (2002). The Otx family. Curr Opin Genet Dev 12, 409-415.
    Smith, H. C., Gott, J. M., and Hanson, M. R. (1997). A guide to RNA editing. Rna 3, 1105-1123.
    Slavov, D., Crnogorac-Jurcevic, T., Clark, M., Gardiner, K. (2000). Comparative analysis of the DRADA A-to-I RNA editing gene from mammals, pufferfish and zebrafish. Gene 250, 53-60.
    Slavov, D., Gardiner, K. (2002). Phylogenetic comparison of the pre-mRNA adenosine deaminase ADAR2 genes and transcripts: conservation and diversity in editing site sequence and alternative splicing patterns. Gene 299, 83-94.
    Tonkin, L. A., Saccomanno, L., Morse, D. P., Brodigan, T., Krause, M., Bass, B. L. (2002). RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO J 21, 6025-6035.
    Tsai, C. W., Tseng, J. J., Lin, S. C., Chang, C. Y., Wu, J. L., Horng, J. F., Tsay, H. J. (2001). Primary structure and developmental expression of zebrafish sodium channel Na(v)1.6 during neurogenesis. DNA Cell Biol 20, 249-255.
    Vaux, D. L., Korsmeyer, S. J. (1999). Cell death in development. Cell 96, 245-254.
    Vogelstein, B., Lane, D., Levine, A. J. (2000). Surfing the p53 network. Nature 408, 307-310.
    Wang, Q., Khillan, J., Gadue, P., Nishikura, K. (2000). Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290, 1765-1768.
    Wang, Q., Miyakoda, M., Yang, W., Khillan, J., Stachura, D. L., Weiss, M. J., Nishikura, K. (2004). Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem 279, 4952-4961.
    Wang, Q., O'Brien, P. J., Chen C. X., Cho D. S., Murray J. M., Nishikura K. (2000). Altered G protein-coupling functions of RNA editing isoform and splicing variant serotonin2C receptors. J Neurochem 74, 1290-1300.
    Westerfield, M. (1994). The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish, 3 edn (University of Oregon Press).
    Wolpert, L., Beddington, R., Jessell, T., Lawrence, P., Meyerowitz, E., Smith, J. (2002). Principles of Development, 2 edn (Oxford University Press Inc).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE