研究生: |
李怡萱 LI,YI-XUAN |
---|---|
論文名稱: |
圖形變化對辨識圓規作圖形成半徑等量性質之研究 Research on the Interplay between Diagram and Geometric Properties Formulated by Ruler-and-Compass Construction |
指導教授: |
許慧玉
Hui-Yu Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2020 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 圓規作圖 、尺規作圖 、半徑等量性質 、圓規工具知識 |
外文關鍵詞: | compass and straightedge constructions, knowledge of cmpasses tools |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討圓規作圖的半徑等量性質,圓心到弧線上任一點等長度,此長度的定量關係為半徑等量性質,研究中將探討學生辨識半徑等量的能力表現,及其可能影響的因素為何。
圓規作圖的要素為「圓心、半徑、弧線」,將其與操弄變項「單一與相異」設計施測試題,分別為「單一圓心相異圓心」、「單一半徑與相異半徑」、「單一弧線與相異弧線」等,並進一步討論圓規作圖要素在幾何圖形中繪製的方式是否為影響半徑等量辨識的因素之一,再分別以「半徑連接與不連接」、「完整弧線與部分弧線」、「實線弧線與虛線弧線」、「以線段為圓心畫弧與以弧線為圓心畫弧」等設計試題,考驗學生半徑等量的答題表現。
以新竹縣市四所國中為研究對象,共施測八年級311位學生、九年級308位學生,並將施測結果以量化資料分析,做為提供促進尺規作圖教學的成效建議。結果顯示:(1)在控制變項「單一半徑與相異半徑」、「實線弧線與虛線弧線」及「以線段為圓心畫弧與以弧線為圓心畫弧」中學生表現有統計顯著差異;(2)施測結果指出,若將圓規以相同的半徑,繪製兩個相異的弧線,學生易直觀從圖形中直接認定其半徑相異,無法正確判別兩相異弧的半徑等量關係。
本研究之施測結果期能針對教師教學及未來研究方向提出相關建議。
This research was conducted to investigate the property of equidistant lengths from any point on a certain arc to the center, while drawing an arc by a certain measure generated by compasses construction. In this study, we examined students’ abilities to recognize the property mentioned above and the possible factors leading to their apprehensions.
In this study, we defined the essential factors of compasses construction to be center, radius and arc; the manipulated variable to be single or more than two essential factors of compasses construction embedded in a certain diagram. We also further discussed whether the ways we presented the factors of compasses construction in a certain geometric diagram could also be one determining factor to explain how students perceive the idea of equidistant lengths from any point on a certain arc to the center as we mentioned in the very beginning part. In this study, we designed all the testing questions based on the following four ways of presenting the factors of compasses contructions to discuss students’ performances; the different ways are connected-unconnected radius, whole-partial arc,solid-dashed line arc, and drawing an arc with a line as a center or with an arc as a center respectively.
The object of this research are junior high school students from four schools located in Hsinchu county and country, including 311 8th grade students and 308 9th grade students. Still, the findings were quantitative analyed as to provide some suggestions for teaching compass and straightedge constructions.Analyses of students’ responses on survey items show that concerning control variables such as single-multi radius, solid-dashed line arc ,and drawing an arc with a line as a center or with an arc as a center respectively, students’ performance showed statistical significance. Still, the findings showed that two diverse arcs even drew with the same radius couldn’t be understood by students. That is to say, studetns couldn’t tell the property of equidistant lengths from any point on a certain arc to the center, while drawing an arc by a certain measure generated by compasses construction.
Based on the findings, this study provided suggestions and comments for teachers’ teaching and advanced the future research directions.
中文部分
左台益(2003)。青少年的對稱概念發展研究。(國科會專題研究計畫成果報告編號:NSC91-2522-S-003-009)。台北:中華民國行政院國家科學委員會
朱德祥與朱維宗(2003)。初等幾何研究。北京,高等教育。
李建霖(2014)。尺規作圖的任務分析與閱讀理解層次。國立台灣師範大學碩士班,碩士論文,台北市。
翁子衛(2008)。圖在幾何解題中所扮演的角色。科學教育月刊,308,7-15。
張順良(2014)。探討閱讀不同特徵之幾何尺規作圖語說理文本的理解表現。國立台灣師範大學碩士班,碩士論文,台北市。
教育部(2008)。國民中小學九年一貫課程綱要。台北市。
葉福進(2005)。國三學生利用三種不同構圖工具進行構圖活動的表現之探討。國立台灣師範大學碩士班,碩士論文,台北市。
陳宥良(2008)。探討國中三年級學生透過摺紙活動進行尺規作圖補救教學之成效。國立台灣師範大學碩士班,碩士論文,台北市。
陳創義(2003)。青少年的幾何形狀概念發展研究。(國科會專題研究計畫成果報告編號:NSC91-2522-S-003-007)。台北:中華民國行政院國家科學委員會。
曾喬志(2008)。從實務操作、尺規作圖到GSP進行國中幾何推理課題的教學實驗研究。國立彰化師範大學碩士班,碩士論文,彰化縣。
劉繕榜(1999)。國中數學資優生尺規作圖表現之探討。國立台灣師範大學碩士班,碩士論文,台北市。
鄭英豪(2004)。青少年數學論證學習與教學的理論之研究:子計畫三-青少年圖形命題論證教學的研究(1/4)。國科會專題研究計畫(NSC 92-2521-S-163-001-)。台北:中華民國行政院國家科學委員會。
譚克平與陳宥良(2009)。運用摺紙提升學生尺規作圖技巧。科學教育月刊,323,15-24。
英文部分
Duval, R.(1998). Geometry from a cognitive point a view. In C.Mammana & V.Villani(Eds.), perspectives on the teaching of geometry for 21st century, 37-52. Dordrecht: Kluwer.
Hui-Yu Hsu.(2010). The study of Taiwanese students’ experiences with geometric calculation with number (GCN) and their performance on GCN and geometric proof(GP), Doctor of Philosophy(Education), The University of Michigan.
Hagar Gal & Liora Linchevski(2010), To see or not to see: analyzing difficulties in geometry from the perspective of visual perception, Educ Stud Math,163-183
Lim Suat Khoh(1997), Compass Constructions: A Vehicle For Promoting Relational Understanding And Higher Order Thinking Skills, Title Compass constructions: a vehicle for promoting relational understanding and higher order thinking skills,138-147
Vinner, S. & Dreyfus, T. (1989). Images and Definitions for the Concept of Function. Journal
for Research in Mathematics Education, 20(4), 356-366.