簡易檢索 / 詳目顯示

研究生: 朱哲興
Che-Hsing Chu
論文名稱: 應用抗氧化聚合物膠體劑量計測量光子射束在小照野下之吸收劑量
Dosimetry for small photon fields using normoxic polymer gel dosimeter
指導教授: 董傳中
Chuan-Jong Tung
李宗其
Chung-Chi Lee
趙自強
Tsi-Chian Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 108
中文關鍵詞: 抗氧化聚合物膠體劑量計蒙地卡羅電腦模擬EDR2 膠片劑量計小照野光子射束
外文關鍵詞: normoxic polymer gel, Monte Carlo simulation, EDR2 film dosimeter, small photon fields
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的是量測光子射束在小照野下之劑量分佈,所使用的工具是MAGAT抗氧化聚合物膠體劑量計、EDR2膠片劑量計以及蒙地卡羅電腦模擬程式等三種方法進行測量與模擬。進行小照野照射前,本研究先進行在大照野下MAGAT劑量膠相關特性之測試,測試項目包含評估圈選不同感興趣區域半徑大小對R2值分佈之影響、不同時間對劑量膠進行磁振造影掃描以及觀察在不同批次的劑量膠中, R2劑量反應曲線的差異。在小照野的照射方面,我們利用由BrainLab公司為光子刀放射手術所製作三種不同尺寸的圓錐型準直儀(14 mm, 4 mm及3.1 mm)進行照射,並比較蒙地卡羅模擬程式與MAGAT劑量膠在絕對劑量下之劑量剖面分佈。本研究也利用由柯達公司所生產的EDR2膠片劑量計進行劑量驗證,並與蒙地卡羅模擬程式比較相對劑量與絕對劑量下之差異。除了利用上述工具測量光子在小照野之劑量分佈外,本研究亦探討蒙地卡羅模擬程式以切割不同大小的體素,模擬光子射束在小照野中絕對劑量分佈之影響。


    摘要 誌謝 目錄 圖目錄 表目錄 第一章 緒論 第二章 文獻回顧與理論基礎 2.1 膠體劑量計系統分類 2.2 膠體劑量計歷史發展 2.2.1 BANG膠體劑量計 2.2.2 抗氧化聚合物膠體劑量計 2.3 聚合物膠體劑量計之反應原理 2.4 聚合物膠體劑量計之特性 2.5 聚合物膠體劑量計之校正方法 2.5.1 多重射束照射法 (multi-beam method) 2.5.2 多樣本瓶照射法 (multi-flask method) 2.5.3 深度劑量照射法 (depth-dose method) 2.6 評估聚合物膠體劑量計劑量分佈之工具 2.6.1 磁振造影 2.6.2 其他劑量評估工具 第三章 實驗材料與方法 3.1 MAGAT劑量膠之製備 3.1.1 實驗設備 3.1.2 化學藥品 3.1.3 化學藥品取樣計算 3.1.4 MAGAT劑量膠之製備程序 3.2 MAGAT劑量膠之照射 3.2.1 直線加速器光子劑量輸出校驗 3.2.2 建立MAGAT劑量膠之校正曲線 3.2.3 不同尺寸圓錐型準直儀之照射 3.3 MAGAT劑量膠之計讀 3.4 影像評估與分析方法 3.5 EDR2 膠片劑量計與蒙地卡羅電腦模擬程式之劑量驗證 3.5.1 EDR2膠片劑量計 3.5.2 蒙地卡羅電腦模擬程式 第四章 結果與討論 4.1 評估MAGAT劑量膠在大照野下之劑量反應 4.1.2 感興趣區域(ROI)半徑大小對R2值之影響 4.1.3 不同時間下對MAGAT劑量膠進行磁振造影掃描 4.1.4 分析MAGAT劑量膠在不同影像切面下R2值之分佈 4.1.5 分析MAGAT劑量膠在不同批次下R2值之分佈 4.2 不同尺寸圓錐型準直儀之照射結果 4.3 EDR2膠片劑量計與蒙地卡羅模擬程式之劑量驗證 4.3.1 不同尺寸圓錐型準直儀之相對劑量比較 4.3.2 不同尺寸圓錐型準直儀之絕對劑量比較 第五章 結論 參考文獻 附錄一 Microsoft Visual C++ 6.0程式碼 附錄二 MATLAB 7.0程式碼

    1.Gore JC, Kang YS, Schulz RJ. Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys Med Biol 1984;29:1189-1197.

    2.Maryanski MJ, Gore JC, Kennan RP, et al. NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn Reson Imaging 1993;11:253-258.

    3.Pappas E, Maris T, Angelopoulos A, et al. A new polymer gel for magnetic resonance imaging (MRI) radiation dosimetry. Phys Med Biol 1999;44:2677-2684.

    4.Gustavsson H, Back SA, Lepage M, et al. Development and optimization of a 2-hydroxyethylacrylate MRI polymer gel dosimeter. Phys Med Biol 2004;49:227-241.

    5.Luci JJ, Whitney HM, Gore JC. Optimization of MAGIC gel formulation for three-dimensional radiation therapy dosimetry. Phys Med Biol 2007;52:N241-248.

    6.Papadakis AE, Maris TG, Zacharopoulou F, et al. An evaluation of the dosimetric performance characteristics of N-vinylpyrrolidone-based polymer gels. Phys Med Biol 2007;52:5069-5083.

    7.Gore JC, Ranade M, Maryanski MJ, et al. Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an optical scanner. Phys Med Biol 1996;41:2695-2704.

    8.Mather ML, Whittaker AK, Baldock C. Ultrasound evaluation of polymer gel dosimeters. Phys Med Biol 2002;47:1449-1458.

    9.Hilts M, Audet C, Duzenli C, et al. Polymer gel dosimetry using x-ray computed tomography: a feasibility study. Phys Med Biol 2000;45:2559-2571.

    10.Schulz RJ, deGuzman AF, Nguyen DB, et al. Dose-response curves for Fricke-infused agarose gels as obtained by nuclear magnetic resonance. Phys Med Biol 1990;35:1611-1622.

    11.Maryanski MJ, Schulz RJ, Ibbott GS, et al. Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol 1994;39:1437-1455.

    12.Maryanski MJ, Ibbott GS, Eastman P, et al. Radiation therapy dosimetry using magnetic resonance imaging of polymer gels. Med Phys 1996;23:699-705.

    13.MacDougall ND, Miquel ME, Wilson DJ, et al. Evaluation of the dosimetric performance of BANG3 polymer gel. Phys Med Biol 2005;50:1717-1726.

    14.Fong PM, Keil DC, Does MD, et al. Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys Med Biol 2001;46:3105-3113.

    15.De Deene Y, Hurley C, Venning A, et al. A basic study of some normoxic polymer gel dosimeters. Phys Med Biol 2002;47:3441-3463.

    16.Venning AJ, Hill B, Brindha S, et al. Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging. Phys Med Biol 2005;50:3875-3888.

    17.Venning AJ, Mather ML, Baldock C. Investigation of vacuum pumping on the dose response of the MAGAS normoxic polymer gel dosimeter. Australas Phys Eng Sci Med 2005;28:105-110.

    18.Venning AJ, Nitschke KN, Keall PJ, et al. Radiological properties of normoxic polymer gel dosimeters. Med Phys 2005;32:1047-1053.

    19.De Deene Y, Vergote K, Claeys C, et al. The fundamental radiation properties of normoxic polymer gel dosimeters: a comparison between a methacrylic acid based gel and acrylamide based gels. Phys Med Biol 2006;51:653-673.

    20.Bayreder C, Georg D, Moser E, et al. Basic investigations on the performance of a normoxic polymer gel with tetrakis-hydroxy-methyl-phosphonium chloride as an oxygen scavenger: reproducibility, accuracy, stability, and dose rate dependence. Med Phys 2006;33:2506-2518.

    21.McJury M, Oldham M, Cosgrove VP, et al. Radiation dosimetry using polymer gels: methods and applications. Br J Radiol 2000;73:919-929.

    22.Deene YD. Fundamentals of MRI measurements for gel dosimetry. Third International Conference on Radiotherapy Gel Dosimetry: Institute of Physics; 2004. pp. 87-114.

    23.Novotny J, Jr., Spevacek V, Dvorak P, et al. Energy and dose rate dependence of BANG-2 polymer-gel dosimeter. Med Phys 2001;28:2379-2386.

    24.Cardenas RL, Cheng KH, Verhey LJ, et al. A self consistent normalized calibration protocol for three dimensional magnetic resonance gel dosimetry. Magn Reson Imaging 2002;20:667-679.

    25.Bankamp A, Schad LR. Comparison of TSE, TGSE, and CPMG measurement techniques for MR polymer gel dosimetry. Magn Reson Imaging 2003;21:929-939.

    26.De Deene Y, Baldock C. Optimization of multiple spin-echo sequences for 3D polymer gel dosimetry. Phys Med Biol 2002;47:3117-3141.

    27.Baldoc C, Lepage M, Back SA, et al. Dose resolution in radiotherapy polymer gel dosimetry: effect of echo spacing in MRI pulse sequence. Phys Med Biol 2001;46:449-460.

    28.Ertl A, Berg A, Zehetmayer M, et al. High-resolution dose profile studies based on MR imaging with polymer BANG(TM) gels in stereotactic radiation techniques. Magn Reson Imaging 2000;18:343-349.

    29.Berg A, Ertl A, Moser E. High-resolution polymer gel dosimetry by parameter selective MR-microimaging on a whole body scanner at 3T. Med Phys 2001;28:833-843.

    30.Haraldsson P, Back SA, Magnusson P, et al. Dose response characteristics and basic dose distribution data for a polymerization-based dosemeter gel evaluated using MR. Br J Radiol 2000;73:58-65.

    31.林怡君. 應用蒙地卡羅方法模擬放射手術之小照野劑量分佈: 國立清華大學; 2006.

    32.Esthappan J, Mutic S, Harms WB, et al. Dosimetry of therapeutic photon beams using an extended dose range film. Med Phys 2002;29:2438-2445.

    33.彭宇民. 蒙地卡羅模擬瓦里安21EX醫用直線加速器6MV光子射束之初始電子參數最佳化: 國立清華大學; 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE