研究生: |
吳寶仲 Ngo, Huynh-Buu-Trong |
---|---|
論文名稱: |
激發光於氧化鋅微米共振腔之理論與實驗分析 Experimental and Theoretical study of emission properties of ZnO-based microresonators |
指導教授: |
張亞中
Chang, Yia-Chung 王本誠 Wang, Peng-Chen |
口試委員: |
魏培坤
Wei, Pei-Kuen 朱治偉 Chu, Chih-Wei 彭隆瀚 Peng, Lung-Han |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | 氧化鋅 、回音壁微腔 |
外文關鍵詞: | ZnO, Whispering Gallery Mode |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由充分的耦合方式,共振波長的光可以被束縛在光共振腔內。這種獨特的束縛行為是因為光與物質的交互作用改變,使得空腔內光子的生命期延長。在各種光學共振腔中,由半導體所組成的共振腔是目前的主流,因為較能滿足高Q因以及低雷射等條件。因此,研究氧化鋅(ZnO)共振腔不只在基礎研究,更在各種應用領域有很重要的影響力。
這份論文中系統性地研究了以水熱合成法製作的氧化鋅微米球共振腔(MSRs)中的迴廊模態(WGM),包含多孔ZnO和 Au@ZnO的MSRs。我們研發了低溫下單步驟合成高品質微米球的製程標準。接著用微光激發(micro-PL)光譜儀探索這些共振腔中的WGM。這篇論文也提出了改良版介電常數(MRI) 以及等效介質理論(EMT)等模型,以用來分析從ZnO MSRs 量到的PL激發光譜。這些模型不只能夠精確指出共振模數和模態類型,也能處理共振腔元件必要的物理參數。最後,可以用格林函數理論,建構出任一MSR的激發光譜。和PL實驗相比較,我們可以更進一步了解MSRs的光學性質像是洩溢模態,激發態,以及相關係數等等這些實驗無法直接量測的特性。
這篇論文的科學進展涵蓋了:合成MSRs的製程標準、從PL光譜分析WGM的數學模型以及能計算MSRs的激發光譜的理論,並將這些整合成ZnO MSRs內光交互作用之下所產生WGM的自洽物理圖像。基於這些發現,我們提出一個解決方案去克服微米球尺寸和WGM品質間的兩難困境:修改共振腔內部結構減少孔隙率或增加激發源數量(例如電漿奈米粒子或量子點)。藉由這個方法我們可以縮小共振腔尺寸達奈米尺度,同時保存了有高品質因子的WGM。因此這篇論文對於未來奈米尺度WGM的研究提供了重要資產,兼且對主模態數的基礎研究,也對奈米雷射或奈米共振腔生物元件的前瞻應用而言是不可或缺的。
It is known that light at resonance wavelengths would be confined to optical resonators by a sufficient coupling scheme. Such confinement behaviors are unique and alter the interaction of light with matter due to the lifetime extension of confined photons. Among various states of an arbitrary optical resonator, semiconductor resonators have been considerably attractive for their potential to achieve high Q-factor and low lasing threshold. Hence, the investigation of ZnO-based resonators has a very important impact not only on fundamental research but also on numerous applications in different fields.
This thesis presented systematically studies on whispering gallery mode (WGM) in ZnO based-micro spherical resonators (MSRs) (including porous ZnO and Au@ZnO MSRs) grown by hydrothermal synthesis. The protocol of synthesized high-quality spherical resonators by single-pot, low-temperature technique is developed. WGM in these resonators is then explored by micro photoluminescence (μ-PL) spectrometer. The thesis also proposes Modified Refractive Index (MRI) and Effective Medium Theory implemented (EMT) schemes to analyze the PL spectra measured from those ZnO MSRs. These schemes are shown that they are useful not only for precisely assigning resonance mode number and type but also for addressing the unneglectable role of resonator’s components. Finally, the emission luminescence spectra of an arbitrary MSR are reconstructed based on Green functional theory. By comparison to experimental PL, we can get a further understanding of optical properties of MSRs such as leaky modes, stimulated modes and their correlation properties which are not able to be clarified by observation of experimental spectrum only.
The scientific advancements covered within this thesis, including the build-up of protocol of synthesis MSRs, models to analyzed the WGM from PL spectra and theory to calculating emission spectra of MSRs, are integrated together to perform a consistent picture of how light interacts inside ZnO MSRs and exhibit WGM behaviors. We show that not only geometry but also components of an MSR affect their WGM. Based on this finding, we propose a solution to overcome the obstacles between size and WGM quality, that is to modify the inner structure by reducing the air fraction or adding more emitting sources (such as plasmonic nanoparticles or quantum dots). By utilizing that approach we can reduce the resonator size to the nanoscale, and yet maintain high-quality WGM. The thesis thus plays a vital asset for the future studies of WGM in nanoscale, which is essential for both fundamental studies of principles mode number and advanced studies on potential applications such as nano-lasing or nano-resonator based bio-devices.
[1] Akahane, Y. et al. Fine-tuned high-Q photonic-crystal nanocavity. Opt. Express 2005. 13: p. 1202–14.
[2] Noda, S. et al. Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photon. 2007. 1: p. 449–58.
[3] Dharanipathy, U. P. et al. High-Q silicon photonic crystal cavity for enhanced optical nonlinearities. Appl. Phys. Lett. 2014. 105: p. 101101.
[4] Song, B. S. et al. Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Mater. 2005. 4: p. 207–10.
[5] Shangcheng, Y. et al. Advances and Prospects for Whispering Gallery Mode Microcavities. Adv. Optical Mater. 2015. 3: p. 1136–1162.
[6] Chang, R. K. and Campillo, A. J. Optical Processes in Microcavities. Vol. 3. 1996, Singapore: World Scientific.
[7] Vahala, K. J. Optical microcavities. Nature 2003. 424: p. 839–46.
[8] Vahala, K. Optical Microcavities. Vol. 5. 2004, Singapore: World Scientific.
[9] Matsko, A. B. et al. Optical resonators with whispering-gallery modes-part I: basics. IEEE J. Sel. Top. Quantum Electron. 2006. 12: p. 3-14.
[10] Féron, P. Whispering Gallery Mode Lasers in Erbium doped fluoride glasses. Annales de la Fondation Louis de Broglie, 2004. 29: p. 317–329.
[11] Rayleigh, J.W.S. The theory of sound. Vol. 2. 1945, New York: Dover.
[12] Rayleigh, J.W.S. Further applications of Bessel’s functions of high order to the whispering gallery and applied problems. Phil. Mag. 1914. 27: p. 100-109.
[13] Rayleigh, J.W.S. The problem of the whispering gallery. Phil. Mag. 1910. 20: p. 1001- 1004.
[14] Mie, G. Beitrage zur optik truber medien. Ann. Phys. 1908. 25: p. 377–445.
[15] Debye, P. Der lichtdruck auf kugeln von beliebigem material. Ann. Phys. 1909. 30: p. 57–136.
[16] Gastine, M. et al. Electromagnetic resonances in free dielectric spheres. IEEE Tran. Microwave Theor. Techn. 1967. MTT-15: p. 694-700.
[17] Affolter P. and Eliasson B. Electromagnetic resonances and Q-factors of lossy dielectric spheres. IEEE Tran. Microwave Theor. Techn. 1973. MTT-21: p. 573-578.
[18] Birks, T. A. et al. High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment. IEEE Phot. Techn. Lett. 2000. 12: p. 182.
[19] Chiasera, A. et al. Spherical whispering-gallery-mode microresonators. Laser Photon. Rev. 2010. 4: p. 457.
[20] Ward, J. et al. WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser & Photon. Rev. 2011. 5: p. 553-570.
[21] Sumetsky, M. Whispering gallery modes in a microfiber coil with an n-fold helical symmetry: classical dynamics, stochasticity, long period gratings, and wave parametric resonance. Opt. Express 2010. 18: p. 2413.
[22] Sarma J. and Shore K. A. Electromagnetic theory for optical disc resonators. IEE Proc. Optoelectronics 1985. 132: p. 325.
[23] McCall, S. L. et al. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 1992. 60: p. 289.
[24] Djordjev, K. et al. Microdisk tunable resonant filters and switches. IEEE Photon. Technol. Lett. 2002. 14: p. 828-830.
[25] Borselli, M. et al. Rayleigh scattering, mode coupling, and optical loss in silicon microdisks. Appl. Phys. Lett. 2004. 85: p. 3693.
[26] Armani, D. K. et al. Ultra-high-Q toroid microcavity on a chip. Nature 2003. 421: p. 925.
[27] Armani, D. K. et al. Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators. Appl. Phys. Lett. 2004. 85: p. 5439.
[28] Kippenberg, T. et al. Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity. Phys. Rev. Lett. 2004. 93: p. 083904.
[29] Hossein-Zadeh M. and Vahala K. J. Free ultra-high-Q microtoroid: a tool for designing photonic devices. Opt. Express, 2007. 15: p. 166.
[30] Ryu, H. Y. et al. Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode. Appl. Phys. Lett. 2002. 80: p. 3883.
[31] Srinivasan, K. et al. Experimental demonstration of a high-quality factor photonic crystal microcavity. Appl. Phys. Lett. 2003. 83: p. 1915.
[32] Lee, P. et al. High-quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect. Appl. Phys. Lett. 2007. 90: p. 151125.
[33] White, I. M. et al. Liquid-core optical ring-resonator sensors. Opt. Lett. 2006. 31: p. 1319.
[34] Zamora, V. et al. Cylindrical optical microcavities: Basic properties and sensor applications. Phot. Nano. Fund. Appl. 2010. 9: p. 149-158.
[35] Sumetsky M. Whispering-gallery-bottle microcavities: the three-dimensional etalon. Opt. Lett. 2004. 29: p. 8.
[36] Murugan, G. S. et al. Optical excitation and probing of whispering gallery modes in bottle microresonators: potential for all-fiber add–drop filters. Opt. Lett. 2010. 35: p. 1893.
[37] Sumetsky, M. et al. Super free spectral range tunable optical microbubble resonator. Opt. Lett. 2010. 35: p. 1866.
[38] Sumetsky, M. et al. Optical microbubble resonator. Opt. Lett. 2010. 35: p. 898.
[39] Li, H. et al. Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators. Opt. Express 2010. 18: p. 25081.
[40] Strekalov, D. V. et al. Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 2016. 18: p. 123002.
[41] Lin H. B. and Campillo A. J. CW nonlinear optics in droplet microcavities displaying enhanced gain. Phys. Rev. Lett. 1994. 73(18): p. 2440—2443.
[42] Lin H. B. and Campillo A. J. Microcavity enhanced Raman gain. Opt. Commun. 1997. 133(1-6): p. 287—292.
[43] Zhang J. Z. and Chang R. K. Generation and suppression of stimulated Brillouin-scattering in single liquid droplets. J. Opt. Soc. Am. B 1989. 6(2): p. 151—153.
[44] Tzeng, H. M. et al. Laser Emission from Individual Droplets at Wavelengths Corresponding to Morphology-Dependent Resonances. Opt. Lett. 1984. 9: p. 499–501.
[45] Lin, H. B. et al. Some Characteristics of a Droplet Whispering-Gallery-Mode Laser. Opt. Lett. 1986. 11: p. 614–616.
[46] Knight, J. C. et al. Core resonance capillary fiber whispering gallery mode laser. Opt. Lett. 1992. 17: p. 1280-1282.
[47] Sandoghdar, V. et al. Very low threshold whispering-gallery-mode microsphere laser. Phys. Rev. A 1996. 54: p. R1777-R1780.
[48] Cai, M. et al. Fiber-coupled microsphere Laser. Opt. Lett. 2000. 25: p. 1430-1432.
[49] Moon H. J. and An K. Interferential Coupling Effect on the Whispering-Gallery Mode Lasing in a Double-Layered Microcylinder. Appl. Phys. Lett. 2002. 80: p. 3250–3252.
[50] Moon H. J. and An K. Observation of Relatively High-Q Coupled Modes in a Layered Cylindrical Microcavity Laser. Jpn. J. Appl. Phys. I 2003. 42: p. 3409–3414.
[51] Moon, H. J. et al. Laser Oscillations of Resonance Modes in a Thin Gain-Doped Ring-Type Cylindrical Microcavity. Opt. Commun. 2004. 235: p. 401–407.
[52] Shevchenko, A. et al. Evanescent-Wave Pumped Cylindrical Microcavity Laser with Intense Output Radiation. Opt. Commun. 2005. 245: p. 349–353.
[53] Treussart, F. et al. Whispering Gallery Mode Microlaser at Liquid Helium Temperature. J. Lumin. 1998. 76: p. 670–673.
[54] Klitzing, W. von et al. Very Low Threshold Lasing in Er3+ Doped ZBLAN Microsphere. Electron. Lett. 1999. 35: p. 1745–1746.
[55] Klitzing, W. von et al. Very Low Threshold Green Lasing in Microspheres by Up-Conversion of IR Photons. J. Opt. B 2000. 2: p. 204–206.
[56] Lissillour, F. et al. Erbium-Doped Microspherical Lasers at 1.56 μm. Electron. Lett. 2000. 36: p. 1382–1384.
[57] Lissillour, F. et al. Whispering-Gallery-Mode Laser at 1.56 μm Excited by a Fiber Taper. Opt. Lett. 2001. 26: p. 1051–1053.
[58] Fujiwara H. and Sasaki K. Microspherical Lasing of an Erbium-Ion-Doped Glass Particle. Jpn. J. Appl. Phys. II 2002. 41: p. L46–L48.
[59] Polman, A. et al. Ultralow-Threshold Erbium-Implanted Toroidal Microlaser on Silicon. Appl. Phys. Lett. 2004. 84: p. 1037–1039.
[60] Yang L. and Vahala K. J. Gain Functionalization of Silica Microresonators. Opt. Lett. 2003. 28: p. 592–594.
[61] Pelton M. and Yamamoto Y. Ultralow Threshold Laser Using a Single Quantum Dot and a Microsphere Cavity. Phys. Rev. A 1999. 59: p. 2418–2421.
[62] Benson O. and Yamamoto Y. Master Equation Model of a Single Quantum Dot Microsphere Laser. Phys. Rev. A 1999. 59: p. 4756–4763.
[63] Oraevsky, A. N. et al. Using Whispering Gallery Modes in Semiconductor Microdevices. Laser Phys. 1999. 9: p. 990–1003.
[64] Rakovich, Y. P. et al. Whispering Gallery Mode Emission from a Composite System of CdTe Nanocrystals and a Spherical Microcavity. Semicond. Science Technol. 2003. 18: p. 914–918.
[65] Shopova, S. I. et al. Microsphere Whispering-Gallery-Mode Laser Using HgTe Quantum
Dots. Appl. Phys. Lett. 2004. 85: p. 6101–6103.
[66] Levi, A. F. J. et al. Room-Temperature Operation of Submicrometer Radius Disk Laser. Electron. Lett. 1993. 29: p. 1666–1668.
[67] Matsko, A. A. et al. Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics. IPN Prog. Rep. 2005. 42: p. 51.
[68] Bozzola, A. et al. Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review. Analyst (Lond.) 2017. 142(6): p. 883–898.
[69] Sun Y. and Fan X. Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 2011. 399: p. 205–211.
[70] Baaske M. and Vollmer F. Optical Resonator Biosensors: Molecular Diagnostic and Nanoparticle Detection on an Integrated Platform. Chem. Phys. Chem. 2012. 13: p. 427–436.
[71] Vollmer, F. et al. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 2012. 1: p. 267–291.
[72] Yurt, A. et al. Single nanoparticle detectors for biological applications. Nanoscale 2012. 4: p. 715–726.
[73] Ciminelli, C. et al. Label-free optical resonant sensors for biochemical applications. Prog. Quantum Electron. 2013. 37: p. 51–107.
[74] Ward, J. M. et al. Hollow core, whispering gallery resonator sensors. Eur. Phys. J.: Spec. Top. 2014. 223: p. 1917–1935.
[75] Foreman, M. R. et al. Whispering gallery mode sensors. Adv. Opt. Photonics 2015. 7: p. 168–240.
[76] Nemova G. and Kashyap R. Silica Bottle Resonator Sensor for Refractive Index and Temperature Measurements. Sensors 2016. 16: p. 87.
[77] Gorodetsky, M. L. et al. Ultimate Q of optical microsphere resonators. Opt. Lett. 1996. 21: p. 453-455.
[78] Vernooy, D. W. et al. High-Q measurements of fused-silica microspheres in the near infrared. Opt. Lett. 1998. 23: p. 247-249.
[79] Ilchenko, V. S. et al. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 2004. 92: Art. No. 043903.
[80] Savchenkov, A.A. et al. Kilohertz optical resonances in dielectric crystal cavities. Phys. Rev. A 2004. 70: Art. No. 051804.
[81] Lai, Y. Y. et al. Strong light–matter interaction in ZnO microcavities. Light: Sci. Appl. 2013. 2: p. e76.
[82] Huang, R. et al. Exciton-polariton lasing and amplification based on exciton–exciton scattering in CdTe microcavity quantum wells. Phys. Rev. B 2002. 65: p. 165314.
[83] Baumberg, J. J. et al. Parametric oscillation in a vertical microcavity: a polariton condensate or micro-optical parametric oscillation. Phys. Rev. B 2000. 62: p. 16247–16250.
[84] Saba, M. et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 2001. 414: p. 731–735.
[85] Diederichs, C. et al. Parametric oscillation in vertical triple microcavities. Nature 2006. 440: p. 904–907.
[86] Ferrier, L. et al. Polariton parametric oscillation in a single micropillar cavity. Appl. Phys. Lett. 2010. 97: p. 031105.
[87] Liew, T. C. H. et al. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 2008. 101: p. 016402.
[88] Lee, J.W. et al. Etching processes for fabrication of GaN/InGaN/AlN microdisk laser structures. J. Vac. Sci. Technol. B. 1996. 14: 3637.
[89] Chang, S. S. et al. Stimulated emission and lasing in whispering-gallery modes of GaN microdisk cavities. Appl. Phys. Lett. 1999. 75: p. 166.
[90] Haberer, E. D. et al. Free-standing, optically pumped, GaN∕InGaNGaN∕InGaN microdisk lasers fabricated by photoelectrochemical etching. Appl. Phys. Lett. 2004. 85: p. 5179.
[91] Tamboli, A. C. et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks. Nature Photon. 2007. 1: p. 61.
[92] Vicknesh, S. et al. Fabrication of deeply undercut GaN-based microdisk structures on silicon platforms. Appl. Phys. Lett. 2007. 90: p. 071906.
[93] Chen, C. C. et al. Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector. Appl. Phys. Lett. 2010. 96: p. 151115.
[94] Kouno, T. et al. Lasing Action on Whispering Gallery Mode of Self-Organized GaN Hexagonal Microdisk Crystal Fabricated by RF-Plasma-Assisted Molecular Beam Epitaxy. IEEE J. Quantum Electron. 2011. 47: p.1565.
[95] Li, K. H. et al. Single-mode whispering gallery lasing from metal-clad GaN nanopillars. Opt. Lett. 2012. 37: p. 374.
[96] Xu, C. X. et al. Whispering-gallery mode lasing in ZnO microcavities. Laser Photon. Rev. 2014. 8: p. 469–494.
[97] Dong, H. et al. Ultraviolet lasing behavior in ZnO optical microcavities. J. Materiomics 2017. 3: p. 255-266.
[98] Czekalla, C. et al. Whispering gallery mode lasing in ZnO microwires. Appl. Phys. Lett. 2008. 92: p. 241102e3.
[99] Gargas, D. J. et al. Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy. J. Am. Chem. Soc. 2009. 131: p. 2125e7.
[100] Liu, X. et al. Electrically pumped random lasers fabricated from ZnO nanowire arrays. Nanoscale 2012. 4: p. 2843e6.
[101] Yan, H. et al. ZnO nanoribbon microcavity lasers. Adv. Mater. 2003. 15: p. 1907e11.
[102] Xu, X. et al. Mapping cavity modes of ZnO nanobelts. Appl. Phys. Lett. 2009. 94: p. 231103.
[103] Kang, B. X. et al. External quantum efficiency-enhanced PtSi Schottky-barrier detector utilizing plasmonic ZnO: Al nanoparticles and subwavelength gratings. Chin. Opt. Lett. 2016. 14: p. 5.
[104] Dai, J. et al. Combined whispering gallery mode laser from hexagonal ZnO microcavities. Appl. Phys. Lett. 2009. 95: p. 191117.
[105] Dai, J. et al. Whispering gallery-mode lasing in ZnO microrods at room temperature. Appl. Phys. Lett. 2009. 95: p. 241110.
[106] Wu, H. P. et al. Static light scattering properties of a ZnO nanosphere aqueous suspension at visible and near-infrared wavelengths. Chin. Opt. Lett. 2017. 15: p. 6.
[107] Sun, X. et al. Room-temperature ultraviolet lasing from ZnO microtubes. Jpn. J. Appl. Phys. 2003. 42: p. 1229e31.
[108] Chen, L. et al. A facile route to ZnO nanoparticle superlattices: synthesis, functionalization and self-assembly. J. Phys. Chem. C 2010. 114: p. 2003e11.
[109] Okamoto, S. et al. Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials. Sci. Rep. 2014. 4: p. 5186.
[110] Okazaki, K. et al. Ultraviolet whispering-gallery-mode lasing in ZnO micro-nano sphere crystal. Appl. Phys. Lett. 2012. 101: p. 211105.
[111] Shimogaki, T. et al. Fabrication and characterization of spherical micro semiconductor crystals by laser ablation method ZnO. Appl. Phys. A 2014. 117: p. 269-273.
[112] Tetsuyama, N. et al. Ultraviolet electroluminescence from hetero p-n junction between a single ZnO MS and p-GaN thin film. Opt. Express 2014. 22: p. 10026.
[113] Nagasaki, F. et al. Synthesis and characterization of Sb-doped ZnO microspheres by pulsed laser ablation. Jpn. J. Appl. Phys. 2016. 55: p. 08RE07.
[114] Minowa, Y. et al. Inner structure of ZnO microspheres fabricated via laser ablation in superfluid helium. Opt. Express 2017. 25: p. 10449.
[115] Moirangthem, R. S. et al. Optical cavity modes of single crystalline ZnO microsphere. Opt. Express 2013. 21: p. 3010.
[116] Trong, H. B. N. et al., Size and morphology dependent evolution of resonant modes in ZnO microspheres grown by hydrothermal synthesis. Opt. Express 2016. 24: p. 16010-16015.
[117] Trong, H. B. N. et al., Whispering gallery modes in hybrid Au-ZnO microsphere resonators: experimental and theoretical investigations. Opt. Mater. Express 2017. 27: p. 2962-2967.
[118] Righini, G.C. et al. Whispering gallery mode microresonators: Fundamentals and applications. Rivista Del Nuovo Cimento 2011. 34(7): p. 435-488.
[119] Soria, S. et al. Optical microspherical resonators for biomedical sensing. Sensors (Basel) 2011. 11(1): p. 785-805.
[120] Bass M. Handbook of optics. 2nd ed. 1995, New York: McGraw-Hill.
[121] Gamba, J. The role of transport phenomena in whispering gallery mode optical biosensor performance, 2012 California Institute of Technology. p. 139.
[122] Vollmer F. and S. Arnold, Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nature Methods 2008. 5(7): p. 591-596.
[123] Keng, T.K. Whispering gallery mode bioparticle sensing and transport, in Polytechnique Institute 2009, New York University. p. 93.
[124] Zhu, J. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon. 2010. 4(1): p. 46-49.
[125] Kippenberg, T.J. Microresonators: Particle sizing by mode splitting. Nat. Photon. 2010. 4(1): p. 9-10.
[126] He, L. Whispering Gallery Mode Microresonators for Lasing and Single Nanoparticle Detection, in Graduate School of Arts and Sciences. 2012, Washington University: Saint Louis, Missouri. p. 145.
[127] Il'chenko, V. S. et al. Thermal Nonlinear Effects in Optical Whispering Gallery Microresonators. Laser Phys. 1992. 2: p. 6.
[128] Weiss, D. S. et al. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. Opt. Lett. 1995. 20(18): p. 1835-1837.
[129] Wehrspohn R.B. and Upping J. 3D photonic crystals for photon management in solar cells. J. Opt. 2012. 14 (2): p. 024003-1 – 024003-9.
[130] Sprafke A. N. and Wehrspohn R. B. Light trapping concepts for photon management in solar cells. in GREEN 2012. p. 177.
[131] Yablonovitch, E. and G.D. Cody, Intensity enhancement in textured optical sheets for solar cells. Electron Devices, IEEE Transactions on, 1982. 29(2): p. 300-305.
[132] Campbell, P. and M.A. Green, Light trapping properties of pyramidally textured surfaces. J. Appl. Phys., 1987. 62(1): p. 243-249.
[133] Zhao, J., et al., 24% efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss. Appl. Phys. Lett., 1995. 66(26): p. 3636-3638.
[134] Peters, M. et al. Photonic concepts for solar cells. Physics of Nanostructured Solar Cells. M.P. Viorel Badescu, Editor. 2010, Nova. p. 1-41.
[135] Ulbrich, C. et al. Directional selectivity and ultra-light-trapping in solar cells. Phys. Status Solidi A 2008. 205(12): p. 2831-2843.
[136] Wiersma, D. S. et al. Optics of nanostructured dielectrics. J. Opt. A- Pure Appl. Opt. 2005. 7(2): p. S190.
[137] Mayer, B. and Madronich S. Actinic flux and photolysis in water droplets: Mie calculations and geometrical optics limit. Atmos. Chem. Phys. 2004. 4(8): p. 2241-2250.
[138] Edman Jonsson, G. et al. Nanostructures for enhanced light absorption in solar energy devices. Int. J. Photoenergy 2011. 2011: p 1-11.
[139] Willander, M. et al. ZnO nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 2009. 20: p. 332001.
[140] Ahn, C. H. et al. A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 2009. 105: p. 013502.
[141] Liu, W. et al. Blue, yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique. Appl. Phys. Lett. 2006. 88: p. 092101.
[142] Könenkamp, R. et al. Vertical nanowire light emitting diode. Appl. Phys. Lett. 2004. 85: p. 6004–6006.
[143] Özgür, Ü. et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005. 98: p. 041301.
[144] Huang, M. H.et al. Room-temperature ultraviolet nanowire nanolasers. Science 2001. 292: p. 1897–1899.
[145] Okamoto, S. et al. White light lasing of ZnO microspheres fabricated by laser ablation. Proc. SPIE 2012. 8263: p. 82630K.
[146] Nakamura, D. et al. Optical characterization of ZnO microspheres produced by laser ablation in air. J. Laser Micro Nanoeng. 2015. 10: p. 162–165.
[147] Kuo, C. L. et al. Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures. J. Phys. Chem. B 2005. 109: p. 20115–20121.Zhu,
[148] Y. F. et al. Template-free synthesis of zinc oxide hollow microspheres in aqueous solution at low temperature. J. Phys. Chem. C 2007. 111: p. 18629–18635.
[149] Xu, D. K. et al. Structural, luminescent and magnetic properties of Yb3+- Er3+doped Gd2O3 hierachical architectures. Cryst. Eng. Comm. 2014. 17: p. 1106-1114.
[150] Trong, H. B. N. et al. Whispering gallery mode biosensing – a detailed study on ZnO microspheres. in the series IFMBE Proceedings Vol. 46, V. V. Toi, T. H. L. Phuong, ed. (Springer, 2015), pp. 21–24.
[151] Schiller, S. et al. Asymptotic expansion of morphological resonance frequencies in Mie scattering. Appl. Opt. 1993. 32: p. 2181–2185.
[152] Cuscó, R. et al. Temperature dependence of Raman scattering in ZnO. Physical Review B, 2007. 75(16): p. 165202.
[153] NIST X-ray Photoelectron Spectroscopy Database, http://srdata.nist.gov/xps/Default.aspx.
[154] Sun, Z. et al. Generalized selfassembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 2014. 5: p. 3813.
[155] Wang, M. et al. Electronic structure and optical properties of Zn(OH)2: LDA+U calculations and intense yellow luminescence. RSC Advances 2015. 5: p. 87496–87503.
[156] Dai, J. et al. Electron-hole plasma induced band gap renormalization in ZnO microlaser cavities. Opt. Express 2014. 22: p. 28831–28837.
[157] Pan J. H. et al. Porous photocatalysts for advanced water purifications. J. Mater. Chem. 2010. 20: p. 4512–4528.
[158] Dai G. et al. Visible whispering gallery modes in ZnO microwires with varied cross sections. J. Appl. Phys. 2011. 110: p. 033101.
[159] Wiersig J. Hexagonal dielectric resonators and micro crystal lasers. Phys. Rev. A 2003. 67: p. 023807.
[160] Nobis T. and Grundmann M. Low-order optical whispering-gallery modes in hexagonal. Phys. Rev. A 2005. 72: p. 063806.
[161] D. Nakamura, Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motoka, Nishi-ku, Fukuoka 819–0395, Japan (personal communication, 2015).
[162] M. Ashida, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyana-cho, Toyobaka, Osaka 560 −8531, Japan (personal communication, 2015).
[163] P. C. H. Chien, T. H. B. Ngo, Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, and Y. C. Chang are preparing a manuscript to be called “Theory of lineshape of WGM enhanced photoluminescence in ZnO microsphere with exciton-polariton effect”.
[164] Wu, C. et al. Electrodynamical light trapping using whispering gallery resonances in hyperbolic cavities. Phys. Rev. X 2014, 4: p. 021015.
[165] Wan, M. et al. Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities. Appl. Phys. Lett. 2017, 110: p. 031103.
[166] Liu, W. et al. Q-factor and absorption enhancement for plasmonic anisotropic nanoparticles. Opt. Lett. 2016. 41. p. 3563–3566.
[167] Markel, V. A. et al. Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 2016. 33: p. 1244– 1256.
[168] Chen, J. R. et al. Characteristics of exciton polaritons in ZnO-based hybrid microcavities. Opt. Express 2011. 19: p. 4101–4112.
[169] Julien A. and Guillon P. Electromagnetic analysis of spherical dielectric shielded resonators. IEEE Trans. Microw. Theory Tech. 1986. 34: p. 723–729.
[170] Sun, et al. Solution-phase synthesis of Au@ZnO core-shell composites. Mater. Lett. 2006. 60: p. 1291–1295.
[171] Gu, F. et al. Metal-organic framework derived Au@ZnO yolk-shell nanostructures and their higly sensitive detection of acetone. RSC Advances 2016. 6: p. 29727–29733.
[172] Gogurla, N. et al. Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci. Rep. 2015. 4: p. 6483.
[173] Chanu, T. I. et al. Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity. Phys. Chem. Chem. Phys. 2014. 16: p. 23686–23698.
[174] Chen P. K. et al. Hydrothermal synthesis of corallike Au/ZnO catalyst and photocatalytic degradation of Orange II dye. Mater. Res. Bull. 2013. 48: p. 2375–2382.
[175] Biroju, R. K. et al. Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties. ACS Appl. Mater. Interfaces 2014. 6: p. 377–387.
[176] Sheini, F. J. et al. Surface characterization of Au-ZnO nanowire films. Ceram. Int. 2012. 38: p. 6665–6670.
[177] Ono L. K. and Cuenya B. R. Formation and thermal stability of Au2O3 on gold nanoparticles: size and support effects. J. Phys. Chem. C 2008. 112: p. 4676–4686.
[178] Y. Minowa et al. Inner structure of ZnO microspheres fabricated via laser ablation in superfluid helium. Opt. Express 2017. 25: p. 10449–10455.
[179] Datsyuk V. V. Some characteristics of resonant electromagnetic modes in a dielectric sphere. Appl. Phys. B 1992. 54: p. 184–187.
[180] Datsyuk V. V. and Izmailov I. A. Optics of microdroplets. Phys.- Usp. 2001. 44: p. 1061–1073.