簡易檢索 / 詳目顯示

研究生: 劉晉嘉
Chin-Chia Liu
論文名稱: 固體觸媒搭配填充床反應器生產生質柴油之研究
指導教授: 黃世傑
Shyh-Jye Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 52
中文關鍵詞: 生質柴油固體觸媒填充床轉酯化甲基酯
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來由於國際原油價格高漲,以及溫室效應造成全球暖化的嚴重性,喚醒了世界各地對於地球生態的重視,發展出新型態且潔淨價廉的替代能源成為全球各地的共識。生質能源可以有效的減低環境的負荷,而生質柴油能以回收的廢食用油進行生產,且具有生物可分解性、不含硫、無苯環化合物,且原物料易於取得,是一種兼顧環保且可以永續利用的替代能源。
    本研究初步嘗試找出具有發展潛力之固體觸媒,並研究其重複使用性,經實驗評估後選定CsF/act-Al2O3為本研究主要探討之觸媒,再以各種方法提升轉酯化反應之產率。為了探討質傳阻力對實驗的影響,進行流速探討;醇油比的大小與反應溫度亦為影響反應產率的關鍵因素。研究結果顯示,當反應溫度為60 ℃,醇油比12:1,流速1.4 ml/min為較佳的反應條件,當反應進行一小時內,產率即可達97 %。在重複使用性上,觸媒能重複使用五次而不致失活,也往工業化邁出了第一步。


    摘要 I 目錄 II 圖目錄 IV 表目錄 V 第一章 緒論 1 第二章 文獻回顧 3 2.1生質柴油 3 2.2 生質柴油性質與品質規範 4 2.3 生質柴油的製造與歷史發展 9 2.3.1生質柴油歷史發展 9 2.3.2生質柴油製造的主要方法 10 2.3.3鹼催化反應 11 2.4 醇類的影響 12 2.5反應溫度的影響 15 2.6非均相觸媒於生產生質柴油之發展 15 2.7固體觸媒製備的主要方法 19 2.7.1沈澱法 19 2.7.2 含浸法 19 2.8 觸媒填充床反應器回顧 20 第三章 實驗材料與方法 22 3.1研究內容 22 3.2實驗材料 23 3.2.1藥品 23 3.2.2反應設備 24 3.2.3實驗設備 25 3.3觸媒之製備 28 3.3.1 CsF/α-Al2O3觸媒之製備 28 3.3.2 CsF/α-Al2O3觸媒之再生 28 3.3.3 CsF/act-Al2O3觸媒之製備 28 3.3.4 CsF/act-Al2O3觸媒之再生 28 3.4實驗設計 28 3.4.1批次轉酯化實驗 28 3.4.2填充床轉酯化實驗 29 3.4.2醇油混合液流量(滯留時間)探討-填充床反應器 29 3.4.3醇油比探討-填充床反應器 29 3.4.4反應溫度探討-填充床反應器 29 3.4.5觸媒重複使用性探討-填充床反應器 29 3.5分析方法 30 3.5.1 總酯及產率之量測與計算 30 3.5.2 含水率之測定方法 31 3.5.3觸媒成分分析 31 第四章 結果與討論 32 4.1 轉酯化分析方法的建立 32 4.2固體觸媒催化轉酯化反應-批次反應系統 33 4.2.1 CsF/α-Al2O3固體觸媒反應性探討 33 4.2.2 CsF/α-Al2O3固體觸媒重複使用性分析 35 4.2.3 CsF/act-Al2O3固體觸媒反應性探討 36 4.3固體觸媒催化轉酯化反應-填充床反應系統 41 4.3.1 反應物體積流率對於產率之研究 41 4.3.2 醇油比之影響 42 4.3.3 反應溫度之影響 43 4.3.4 觸媒重複使用性探討 44 第五章 結論 46 第六章 未來研究方向 47 第七章 參考文獻 48

    巫國維,(2007),固體觸媒生產生質柴油之研究,國立清華大學化學工程研究所碩士論文。
    李秉傑,邱宏明,王奕凱合譯 (1988)。非均勻係催化原理應用,
    110-113。台北:渤海堂文化事業有限公司。
    美國黃豆協會,(2006),生質柴油焦點。
    國家標準局,(2007),生質柴油國家標準CNS 15072。
    謝志誠,(2007),再生能源,國立臺灣大學生物產業機電工程學系著作。
    Antolin, G., Tinaut, F. V., Briceno, Y., Castano, V., Perez, C., and Ramirez, A. I. (2002) Optimisation of biodiesel production by sunflower oil transesterification. Bioresource Technology 83(2), 111-114.
    ASTM International, (2006) Standard Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration. ASTM D 664-06.
    Billaud, F., Dominguez, V., Broutin, P., and Busson, C. (1995) Production of Hydrocarbons by Pyrolysis of Methyl-esters from Rapeseed oil. Journal of the American Oil Chemists Society 72(10), 1149-1154.
    Canakci, M. and Van Gerpan, J. (1999). Biodiesel production via acid catalysis. Transaction of the ASAE, 42(5), 1203-1210.
    Cantrell, D. G., Gillie, L. J., Lee, A. F., and Wilson K. (2005). Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Applied Catalysis A: General 287, 183–190.
    Cetinkaya, M. and Karaosmanoglu, F. (2004) Optimization of base-catalyzed transesterification reaction of used cooking oil. Energy and Fuels 18(6), 1888-1895.
    Clacens, J. M., Genuit, D., Veldurthy, B., Bergeret, G., Delmotte, L., Garcia-Ruiz1, A., and Figueras, F. (2004) CsF supported by α-alumina: an efficient basic catalyst. Applied Catalysis B: Environmental 53, 95–100
    Demirbas, A. (2002) Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management 43(17), 2349-2356.
    Demirbas, A. (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Conversion and Management 44(13), 2093-2109.

    Di Serio, M., Ledda, M., Cozzolino, M., Minutillo, G., Tesser, R., and Santacesaria E. (2006). Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Industrial and Engineering Chemistry Research 45, 3009-3014.
    Ebiura, T., Echizen, T., Ishikawa, A., Murai, K., and Baba, T. (2005) Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst. Applied Catalysis A: General 283, 111–116.
    Encinar JM, Gonzalez JF, Sabio E, Ramiro MJ.(1999) Preparation and properties of biodiesel from Cynara cardunculus L. oil. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH 38(8), 2927-2931.
    European Committee for Standardization, (2002) Fat and oil derivatives – Fatty Acid Methyl Esters (FAME) – Determination of ester and linolenic acid methyl ester contents. EN 14103.
    Fangrui, M. and Milford, A. H. (1999) Biodiesel production: a review. Bioresource Technology 70, 1-15.
    Fogler, H. Scott (2006) Elements of Chemical Reaction Engineering, 4th Edition, Prentice Hall.
    Freedman, B.,Butterfield, R. O., and Pryde, E. H. (1986)
    Transesterification kinetics of soybean oil. Journal of the American Oil Chemists Society 63(10), 1375-1380.
    Freedman, B., Pryde, E. H., and Mounts, T. L. (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists Society 61(10), 1638-1643.
    Furuta, S., Matsuhashi, H., and Arata, K. (2004) Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catalysis Communications 5, 721–723.
    Haas, M. J. (2004). The interplay between feedstock quality and esterification technology in biodiesel production. Lipid Technology, 16(1), 7-12.
    Haas, M. J., Michalski, P. J., Runyon, S., Nunez, A., and Scott, K. M. (2003) Production of FAME from acid oil, a by-product of vegetable oil refining. Journal of the American Oil Chemists Society 80(1), 97-102.
    Igor N. Martyanov, Abdelhamid Sayari*(2008) Comparative study of triglyceride transesterfication in the presence of catalytic amounts of sodium, magnesium, and calcium methoxides. Applied Catalysis A: General 339, 45-52.
    Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L., and Jenvanitpanjakul, P. (2006) Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal 116, 61–66.
    Khan, A. K. (2002). Research into biodiesel kinetics & catalyst development. University of Queensland, Brisbane, Queensland
    Kim, H. J., Kanga, B. S., Kima, M. J., Park, Y. M., Kimb, D. K., and Lee, J. S. (2004) Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today 93–95, 315–320.
    Knothe, G., Matheaus, A. C., and Ryan, T. W. (2003) Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82(8), 971-975.
    Lo´pez, D. E., Goodwin Jr., J. G., Bruce, D. A., and Lotero, E. (2005) Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General 295, 97–105.
    Liang, Y. C., May, C. Y., Foon, C. S., Ngan, M. A., Hock, C. C., and Basiron Y. (2006) The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel. Fuel 85(5-6), 867-870.
    Lotero, E., Liu, Y., Lopez, D. E., Suwannakarn, K., Bruce, D. A. and Goodwin, J. G. Jr. (2005). Synthesis of Biodiesel via Acid Catalysis. Industrial & Engineering Chemistry Research, 44(14), 5353-5363.
    Ma, F. R. and Hanna, M. A . (1999) Biodiesel production: a review. Bioresource Technology 70(1), 1-15.
    Mazzocchia, C., Modica, G., Kaddouri, A., and Nannicini, R. (2004) Fatty acid methyl esters synthesis from triglycerides over heterogeneous catalysts in the presence of microwaves. Compets Rendus Chimie 7, 601–605.
    M. Pilar Dorado, Evaristo Ballesteros, Francisco J. López, and Martin Mittelbach. (2004) Optimization of Alkali-Catalyzed Transesterification of Brassica Carinata Oil for Biodiesel Production. Energy Fuels, 18(1), 77 -83.
    Noureddini, H., Gao, X., and Philkana, R. S. (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology 96(7), 769-777.
    Noureddini, H. and Zhu, D. (1997) Kinetics of transesterification of soybean oil. Journal of the American Oil Chemists Society 74(11), 1457-1463.
    Onay, O., Beis, S. H., and Kockar, O. M. (2001) Fast pyrolysis of rape seed in a well-swept fixed-bed reactor. Journal of Analytical and Applied Pyrolysis 58, 995-1007.
    Pedro Felizardo, M. Joana Neiva Correia, Idalina Raposo, Joao F. Mendes, Rui Berkemeier, Joao Moura Bordado. (2006). Production of biodiesel from waste frying oils. WASTE MANAGEMENT 26(5), 487-494.
    Reddy, C. R. V., Oshel, R., and Verkade, J. G. (2006) Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides. Energy and Fuels 20, 1310-1314.
    Robert, T. M., Robert, and N. B. (1999) Organic Chemistry. (6th ed.). Prentice Hall International, Inc. New York, America.
    Saka, S., and Kusdiana, D. (2001) Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80(2), 225-231.
    Schwab, A.W., Bagby, M.O., and Freedman, B. (1987) Preparation and properties of diesel fuels from vegetable oils. Fuel 66, 1372-1378.
    Schwab, A. W., Dykstra, G. J., Selke, E., Sorenson, S. C., and Pryde, E. H. (1988). Diesel fuel from thermal decomposition of soybean oil. Journal of the American Oil Chemists Society 65, 1781-1786.
    Shay, E.G. (1993) Diesel fuel from vegetable oils: status and opportunities. Biomass and Bioenergy 4, 227-242.
    Shimada, Y., Watanabe, Y., Sugihara, A., and Tominaga, Y. (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. Journal of Molecular Catalysis B-enzymatic 17(3-5), 133-142.
    Sonntag, N. O. V. (1979). Structure and composition of fats and oils. Bailey’s industrial oil and fat products, vol. 1, 4th edition, ed. Swern, D. John Wiley and Sons, New York, p. 99.
    Srivastava, A. and Prasad, R. (2000) Triglycerides-based diesel fuels. Renewable and Sustainable Enerty Reviews 4(2), 111-133.
    Suppes, G. J., Dasari, M. A., Doskocil, E. J., Mankidy, P. J., and Goff, M. J. (2004) Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A: General 257, 213–223.
    Stanislaw (1999), Alkaline-earth metal compound as alcoholysis catalysts for ester oils synthesis. Applied Catalysis A: General 192, 23-28.
    Tanabe, K., Solid Acids and Bases, Academic, New York (1970).
    Tyson, K. S. (2001). Biodiesel Handling and Use Guidelines. NREL TP
    580-30004. National Renewable Energy Laboratory.
    Veldurthy, B., Clacens, J. M., and Figueras, F. (2005) Correlation between the basicity of solid bases and their catalytic activity towards the synthesis of unsymmetrical organic carbonates. Journal of Catalysis 229, 237–242

    Vicente, G., Martinez, M., and Aracil, J. (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology 92(3), 297-305.
    Wright, H. J., Segur, J. B., Clark, H. V., Coburn, S. K., Langdon, E. E. and DuPuis, R. N. (1944). A report on ester interchange. Oil and Soap, 21, 145-148.
    Xie, W. and Huang, X. (2006). Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catalysis Letters 107, 53-59.
    Xie, W., Peng, H., and Chen, L. (2006a) Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis A: Chemical 246, 24–32.
    Xie, W., Peng, H., and Chen, L. (2006b) Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General 300, 67–74.
    Yamaguchi, T. and Ookawa, M. (2006) A consideration on the state of dispersed metal nitrate and carbonate of Group 1 and 2 elements and basicity generation. Catalysis Today 116, 191–195
    Ziejewski, M., Kaufman, K. R., Schwab, A. W., and Pryde, E. H. (1984) Diesel engine evaluation of a nonionic sunflower oil-aqueous ethanol microemulsion. Journal of the American Oil Chemists Society 61, 1620-1626.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE