簡易檢索 / 詳目顯示

研究生: 周健傑
Zhou, Jian-Jie
論文名稱: 植基於龜殼與AMBTC的影像篡改偵測與恢復機制
An Authentication and Recovery Scheme Based on Turtle Shell Algorithm and AMBTC-Compressed Images
指導教授: 唐傳義
Tang, Chuan-Yi
林家禎
Lin, Chia-Chen
口試委員: 張雅芬
Chang, Ya-Fen
呂慈純
Lu, Tzu-Chuen
學位類別: 碩士
Master
系所名稱:
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 53
中文關鍵詞: 龜殼演算法影像篡改偵測影像恢復循環冗餘校驗AMBTC
外文關鍵詞: turtle shell, AMBTC
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們需要一個演算法,對於一張可能被攻擊的影像,演算法能提供很高的召回率(TRP),低誤報率(FPR)。不僅如此,他還能夠對破壞的地方進行恢復。為了讓演算法能夠有高召回率,低誤報率,我們使用兩個龜殼矩陣來構建一個空間域,用來隱藏資料。我們用CRC來作爲我們的隱藏的數據的驗證。我們使用AMBTC來重構被破壞的區塊。我們通過演算法生成出來的影像PSNR達到了42.45db。不僅如此,在我們的實驗過程中,我們還發現了在現存的很多偵測演算法常用的refinement有可能會導致大量誤報的問題。因此,在我們方法的設計過程中,我們有效地利用CRC的驗證機制使我們提出的TS-IAR,可以不需要使用refinement,就額可以維持一個高的召回率(TPR),同時,不造成過去refinement所導致的誤報情況。


    It is a challenge to design an image authentication scheme which has high TPR (true positive rate) but offers the lowest FPR (false positive rate). In this thesis, to increase the tamper detection ratio but maintain the lowest FPR, CRC is applied to our TS-IAR (turtle shell-based image authentication and recovery) scheme. Moreover, with the assistance of embedded BTC coefficients and the turtle shell-based hiding strategy, the PSNRs of the watermarked images is significantly improved and up to 42.45 dB on average compared with existing schemes, and the recovery feature can be guaranteed. During the experiments, we also found that the refinement procedure can increase that the TPR but it also could cause unexpected false alarm. By adopting the CRC coworking with our proposed TS-IAR scheme, the tamper detection performance can be guaranteed without causing false alarm which frequently being caused by the refinement procedure.

    ABSTRACT ii 摘要 iii 誌謝 iv List of Tables vi List of Figures viii 1. Introduction 1 2. Related Works 4 2.1. Absolute moment block truncation coding (AMBTC) 4 2.2. Watermarking schemes for image authentication 7 2.3. Refinement procedure 9 3. Proposed TS-IAR Scheme 11 3.1. Embedding phase 11 3.2. Extraction and validation phase 23 3.3. Recovery phase 26 4. Experiment Results and Discussions 27 5. The Disaster of Refinement Procedure 46 6. Conclusions 49 References 51

    [1] S. Kim, H. J. Lee, “Rgbw image compression by low-complexity adaptive multi-level block truncation coding,” IEEE Transactions on Consumer Electronics, Vol. 62, No. 4, 2017, pp. 412-419.
    [2] Int. Telecommunication Union, CCITT Recommendation T.81, Information Technology-Digital Compression and Coding of Continuous-tone Still Images-Requirements and Guidelines,1992.
    [3] R. M. Gray, “Vector quantization,” IEEE ASSP Magazine, Vol. 1, No. 2, 1984, pp. 4-29.
    [4] E. J. Delp, O. R. Mitchell, “Image compression using block truncation coding,” IEEE Transactions on Communications, Vol. 27, No. 9, 1979, pp. 1335-1341.
    [5] M. D. Lema, O. R. Mitchell, “Absolute moment block truncation coding and its application to color images,” IEEE Transactions on Communications, Vol. 32, No. 10, 1984, pp. 1148-1157.
    [6] Y. V. RAMANA, C. ESWARAN, “A new algorithm for BTC bit plane coding,” IEEE Transactions on Communications, Vol. 43, No. 6, 1995, pp. 2010-2011.
    [7] Y. C. Hu, “Improved moment preserving block truncation coding for image compression,” Electronics Letters, Vol. 39, No. 19, 2003, pp. 1377-1379.
    [8] C. C. Lin, X. L. Liu, J. J. Zhou, S. M. Yuan, “An optimal modification BTC scheme based on binary search tree,” Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIHMSP2014), 2014, pp. 114-117.
    [9] B. B. Haghighi, A. H. Taherinia, A. Harati, “Trlh: fragile and blind dual watermarking for image tamper detection and self-recovery based on lifting wavelet transform and halftoning technique,” Journal of Visual Communication & Image Representation, Vol. 50, 2018, pp. 49-64.
    [10] G. Ulutas, A. Ustubioglu, B. Ustubioglu, V. V. Nabiyev, M. Ulutas, “Medical image tamper detection based on passive image authentication,” Journal of Digital Imaging, Vol. 30, No.6, 2017, pp. 695-709.
    [11] C. C. Lin, Y. Huang, W. L. Tai, “A high-quality image authentication scheme for ambtc-compressed images,” 2014 KSII Transactions on Internet & Information Systems, Vol. 8, No.12, pp. 4588-4603.
    [12] H. Zhong, H. Liu, C. C. Chang, “A Novel Fragile Watermark-based Image Authentication Scheme for AMBTC-compressed Images”, Journal of Information Hiding and Multimedia Signal Processing, Vol. 7, No.2, 2016, pp. 362-375.
    [13] W. Li, C. C. Lin, J. S. Pan, “Novel image authentication scheme with fine image quality for btc-based compressed images” Multimedia Tools & Applications, Vol. 75, No.8, 2015, pp. 4771-4793.
    [14] T. H. Chen, T. C. Chang, “On the security of a BTC-based-compression image authentication scheme”, Multimedia Tools & Applications, 2018, Vol. 77, pp. 12979-12989.
    [15] X. Zhang, S. Wang, G. Feng, “Fragile Watermarking Scheme with Extensive Content Restoration Capability,” Lect. Notes Comput. Sci, Vol. 5703, 2009, pp. 268-278.
    [16] T. Y. Lee, S. D. Lin, “Dual watermark for image tamper detection and recovery”, Pattern Recognition, Vol. 41, No.11, 2008, pp. 3497-3506.
    [17] C. W. Yang, J. J. Shen, “Recover the tampered image based on VQ indexing,” Signal Process, vol. 90, No.1, 2010, pp. 331–343.
    [18] S. S. Yang, C. Qin, Z. X. Qian, B. Q. Xu, “Tampering detection and content recovery for digital images using halftone mechanism,” Proceedings of the 10th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kitakyushu, Japan, 2014, pp. 130-133.
    [19] C. Qin, P. Ji, X. Zhang, J.Dong, J. Wang, “Fragile image watermarking with pixel-wise recovery based on overlapping embedding strategy,” Signal Processing, Vol.138, 2017, pp. 280–293.
    [20] W. W. Peterson, D. T. Brown, “Cyclic Codes for Error Detection”, Proceedings of the Ire, Vol.49 ,1961, pp.228-235.
    [21] W.H. Payne, J.R. Rabung, T.P. Bogyo., “Coding the Lehmer pseudo-random number generator”, Communications of the ACM, Vol.12, No.5, 1969, pp.85-86.

    QR CODE