簡易檢索 / 詳目顯示

研究生: 周書萍
論文名稱: 線性模型下的最佳製程參數設定問題之探討
指導教授: 張延彰
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 19
中文關鍵詞: 品質損失函數交易問題牛頓法
外文關鍵詞: loss function, trade-off problem, Newton's Method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在工業製程上,設定最佳製程參數是提升產品品質且可以有效節省成本的方法之一。本文中,我們將探討在多特徵目標值的情形下,利用Taguchi的損失函數,建立相關模型,並求此模型下的最佳參數。為方便討論,最佳參數仍以平均數為主。而在變數型態上,我們的產品輸出特徵將同時考慮量化及質性特徵,針對質性特徵,我們利用潛在變數模型進行建模,並以牛頓法求解,最後舉數值範例加以說明,提供一個思考方向。


    Abstract

    In the industrial manufacturing process, setting the optimum process parameter is a cost-saving method to improve product quality effectively. In this article, we will use Taguchi's loss function to generalize the model and explore the optimal parameters of the multiple input variables under linear assumption. To facilitate our discussion, the best average is still the mean parameter. We will consider the quantitative and qualitative characteristics in the output variable. For the qualitative characteristics, we use latent variable model and consider Newton's Method to find the optimal process parameter.
    Finally, we illustrate the paper with some examples and provide a direction of thinking.

    目錄 第壹章 緒論………………………………………………………1 第貳章 文獻探討…………………………………………………2 第參章 模型假設與探討…………………………………………8 第肆章 數值範例…………………………………………………14 第伍章 結論………………………………………………………16 參考文獻………………………………………………………………17 附錄(一) 卜瓦松迴歸模型的介紹…………………………… 18 附錄(二) 牛頓---拉夫遜方法…………………………………19

    [1]Taguchi, G., Chowdhury, S., Wu, Y. ( 2004).Taguchi’s Quality Engineering Handbook, Wiley-Interscience.
    [2]Taguchi, G. ( 1986). Introduction to Quality Engineering , Asia Productivity Organization, Tokyo.
    [3]Huang,Y.-F. ( 2001). “trade-off between quality and cost,” Quality& Quantity , 35 , pp.265-276.
    [4]Yang,S.F. (1997). “An optimal design of joint & control charts using quadratic loss function, ” Inter. J. of Quality and Reliability Management, 11(9) , pp.948-966.
    [5]Taguchi, G.( 1987). Introduction to Quality Engineering , Course Manual, American Supplier Institute Inc.
    [6]Golhar, D.Y and Pollock, S.M. ( 1988). “Determination of the optimal process mean and the upper limit of the canning problem,” Journal of Quality Technology, 20 , pp.188-192.
    [7]Dodson , B.L.( 1993). “Determining the optimum target value for a process with upper and lower specifications, ” Quality Engineering, 5(3) , pp.393-402.
    [8]Spring,F.A. and Yeung A.S. ( 1998). “A general class of loss functions with industrial applications, ” Journal of Quality Technology , 30 , pp.152-162.
    [9]Huang, Y.-F.( 2000). “Determination of the Best Mean in the Taguchi:Quality Selection Model, ”International Journal of Production Planning & Control, 11(6) , pp.565-571.
    [10] Elsayed, E.A., Chen, A.( 1993). “Optimal levels of process parameters with multiple characteristics, ”Inter. J. of Prod. Res. , 31(5) , pp.1117-1132.
    [11]Lee, M.K., Kwon, H.M., Hong, S.H., and Ha, J.W. (2006). “Economic selection of sub-process mean values for a mixture roduction process, ” Inter. J. of Prod. Res. , 44(20) , pp.4367-4376.
    [12]Varian, H. R. (1975). A Bayesian approach to real estate assessment. In:S. E. Fienberg and A. Zellner (Eds.), studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savag, Amsterdam:North-Holland, pp. 195-208.
    [13]Zellner,A.( 1986). “Bayesian estimation and prediction using asymmetric loss functions. ”
    Journal of the American Statistica Association , 81 , pp.446-451.
    [14]Chang, Y.-C. and Hung, W.-L.( 2007). “LINEX loss functions with applications to determining the optimum process parameters, ” Quality& Quantity , 41 , pp.291-301.
    [15] Chang,Y.-C., Huang, W.-L., and Hung, W.-L. ( 2009). “Optimization of process parameters using weighted convex loss functions , ” European Journal of Operational Research, 196 , pp.752-763.
    [16]李輝煌(2008),田口方法:品質設計的原理與實務,高立圖書有限公司。
    [17]陳蓉貞(2006),考量品質損失函數於多階段連續生產系統之最佳製程平均數設定,南台科技大學工業管理研究所碩士論文。
    [18]徐業良(1995),工程最佳化設計,宏明圖書印製,華泰圖書總經銷。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE