簡易檢索 / 詳目顯示

研究生: 劉又欣
Yu-Hsin Liu
論文名稱: 銀與玻璃陶瓷系統之界面反應
Interfacial Reactions Between Silver and Glass Ceramics Substrate
指導教授: 簡朝和
Jau-Ho Jean
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 1冊(21頁)
中文關鍵詞: 電阻失效擴散可靠度加速壽命測試玻璃陶瓷共燒二次離子質譜儀
外文關鍵詞: Resistance Degradation, Field-Assisted Diffusion, Reliability, Highly Accelerated Life Test, HALT, Glass Ceramics, Cofire, SIMS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要探討已塗佈銀電極的鈣硼矽玻璃陶瓷(CBSG+Al2O3)在施加電場後,電阻失效的機制及其界面反應。首先,以電子槍蒸鍍系統披覆厚度約為80 nm的銀膜在已燒結緻密的CBSG+Al2O3試片上,經1000 V電壓的作用下,於56小時後始發現試片有電阻失效現象。經由二次離子質譜儀分析結果指出:在電場作用下,銀在CBSG+Al2O3試片中擴散所需的活化能為73 kJ/mol。此外,在高溫共燒及非共燒的試片經二次離子質譜儀分析後,可推算出銀在CBSG+Al2O3中的擴散活化能分別為68及70 kJ/mol。而銀與不同厚度的CBSG+ Al2O3試片,經共燒後的厚度平方與電阻失效時間呈線性關係,符合動力學的擴散通式。針對全部已發生電阻失效的試片,利用陶瓷電容器通用的可靠度公式可估算出該活化能介於58-63 kJ/mol之間。證實了塗佈銀電極的CBSG+ Al2O3試片,在外加電場作用下,銀離子擴散為試片發生電阻失效現象的主因。


    目錄 1. 前言……………………………………………………………………1 2. 實驗方法………………………………………………………………3 2.1 原材料選擇………………………………………………………3 2.1.1 玻璃粉末…………………………………………………3 2.1.2 銀電極……………………………………………………3 2.2 漿料製備…………………………………………………………3 2.3 刮刀製程…………………………………………………………4 2.4 粉末乾壓試片準備………………………………………………4 2.5 脫脂燒結…………………………………………………………4 2.5.1 脫脂除碳…………………………………………………4 2.5.2 生胚試片的非等溫燒結…………………………………4 2.6 性質量測…………………………………………………………5 2.6.1 相對燒結密度值…………………………………………5 2.6.2 收縮量量測………………………………………………5 2.6.3 結晶相分析………………………………………………5 2.6.4 電阻失效時間量測………………………………………6 2.6.5 定量╱半定量分析………………………………………6 3. 結果與討論……………………………………………………………8 3.1 CBSG+Al2O3玻璃陶瓷的燒結行為………………………………8 3.2 CBSG+Al2O3玻璃陶瓷的電阻失效現象…………………………8 3.3 銀在CBSG+Al2O3玻璃陶瓷的擴散行為…………………………9 3.3.1 電場驅動下銀擴散的活化能計算………………………9 3.3.2 高溫下共燒銀的擴散係數及活化能計算……………11 3.3.3 銀在CBSG+Al2O3中的移動方式………………………12 3.4 CBSG+Al2O3電阻失效時間與其可靠度之關係…………………13 3.4.1 陶瓷電容的可靠度……………………………………13 3.4.2 CBSG+Al2O3的電阻失效時間與活化能………………13 3.4.3 可靠度公式中的電壓敏感度n…………………………14 3.5 銀在CBSG+Al2O3系統中擴散行為與系統結晶程度的關聯……14 3.5.1 銀擴散路徑……………………………………………14 3.5.2 CBSG+Al2O3系統的結晶性質…………………………14 3.5.3 持溫時間與電壓敏感度n之間的關聯…………………15 3.5.4 燒結溫度與電阻失效性質之間的關聯………………16 4. 結論…………………………………………………………………17 5. 參考文獻……………………………………………………………18

    [1] J. H. Jean and C. R. Chang, “Interfacial Reaction Kinetics between Silver and Ceramic-Filled Glass Substrate,” J. Am. Ceram. Soc., 87 [7] 1287-1293 (2004).
    [2] K. B. Shim, N. T. Cho, and S. W. Lee, “Silver diffusion and microstructure in LTCC multilayer couplers for high frequency applications,” J. Mat. Sci., 35 [4] 813-820 (2000).
    [3] H. Kishi, Y. Mizuno and H. Chazono, “Base-Metal-Electrode Multilayer Ceramic Capacitors:Past, Present and Future Perspectives,” Jpn. J. Appl. Phys., 42 [1] 1-15 (2003).
    [4] Y. Shimada, K. Utsumi, M. Suzuki, H. Takamizawa, M. Nitta, and T.
    Watari, “Low Firing Temperature Multilayer Glass-Ceramic Substrate,” IEEE Trans. Compon., Hybrids, Manuf. Technol., CHMT-6 [4] 382-388 (1984).
    [5] S. H. Knickerbocker, A. H. Kumar, and L. W. Herron, “Cordierite Glass-Ceramics for Multilayer Ceramic Packaging, ” Am. Ceram. Soc. Bull., 72 [1] 90-95 (1993).
    [6] R. R. Tummala, “Ceramic and Glass-Ceramic Packaging in the 1990s,” J. Am. Ceram. Soc., 74 [5] 895-908 (1991).
    [7] C. R. Chang and J. H. Jean, “Crystallization Kinetics and Mechanism of Low-Dielectric, Low-Temperature, Cofirable CaO-B2O3-SiO2 Glass-Ceramics,” J. Am. Ceram. Soc., 82 [7] 1725-32 (1999).
    [8] J. H. Jean, Y. C. Fang, S. X. Dai, R. F. Huang, and D. L. Wilcox Sr., “Devitrification Kinetics and Mechanism of K2O-CaO-SrO-BaO-B2O3-SiO2,” J. Am. Ceram. Soc., 84 [6] 1354-60 (2001).
    [9] J. I. Steinberg, S. J. Horowitz, and R. J. Bacher, “Low-Temperature Cofired Tape Dielectric Material Systems for Multilayer Interconnections”; pp. 31-39 in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices. Edited by J. B. Blum and W. R. Cannon. American Ceramic Society, Westerville, OH, 1986.
    [10] D. M. Mattox, S. R. Gurkovich, J. A. Olenick, and K. M. Mason, “Low Dielectric Constant, Alumina-Compatible, Co-fired Multilayer Substrate, ” Ceram. Eng. Sci. Proc., 9 [11-12] 1567-78 (1988).
    [11] K. Niwa, N. Kamehara, H. Yokoyama, K. Yokouchi, and K. Kurihara, “Multilayer Ceramic Circuit Board with Copper Conductor”; pp. 41-47 in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices. Edited by J. B. Blum and W. R. Cannon. American Ceramic Society, Westerville, OH, 1986.
    [12] T. K. Gupta and J. H. Jean, “Principles of the Development of a Silica Dielectric for Microelectronic Packaging,” J. Mat. Res., 11 [1] 243-63 (1996).
    [13] Technical publication of Ferro Tape-A6, Ferro Corp., Santa Barbara, CA, 1996
    [14] S. X. Dai, R. F. Huang, and D. L. Wilcox Sr, “Use of Titanates To Achieve a Temperature Stable LTCC Dielectric for Wireless Applications,” J. Am. Ceram. Soc., 85 [4] 828-32 (2002).
    [15] J. R. Lloyd, J. Clemens and R. Snede, “Copper Metallization Relaibility,” Microelectronics Reliability, 39 [11] 1595-1602 (1999).
    [16] M. V. Slinkina and G. I. Donstov, “Diffusional penetration of silver from electrodes into PZT ceramics,” J. Mat. Sci., 28 [19] 5189-5192 (1993).
    [17] D. J. Gasper, F. K. Patterson, and B. L. Irolido, “Silver Reliability in a Multilayer Ceramic Packaging”; pp. 246-55 in ISHM 1988 Proceedings. International Society for Hybrid Microelectronics, Reston, VA, 1988.
    [18] C. R. S. Needs, “Environmental Durability of Silver Multilayer Circuits”; pp. 173-78 in ISHM 1994 Proceedings. International Society for Hybrid Microelectronics, Reston, VA, 1994.
    [19] D. E. Riemer, “Material Selection and Design Guidelines for Migration-Resistant Thick-Film Circuits with Silver-Bearing Conductors”; pp. 287-92 in ECC 31st Proceedings (Atlanta, GA). 1981.
    [20] A. Hornung, “Diffusion of Silver in Borosilicate Glass”; pp. 250-55 in ECC 18th Proceedings (Atlanta, GA). 1968.
    [21] T. Martin and D. Schroefer, “Reliability Analysis of LTCC MCM’s Utilizing Silver Conductives”; pp. 295-300 in ISHM 1994 Proceedings. International Society for Hybrid Microelectronics, Reston, VA, 1994.
    [22] I. K. Yoo, L. C. Burton and F. W. Stephenson, “Electrical Conduction Mechanisms of Barium-Titanate-Based Thick-Film Capacitors,” IEEE Trans. Compon., Hybrids. Manuf. Technol., CMT-10 [2] 274-282 (1987).
    [23] H. Y. Lee, K. C. Lee, J. N. Schunke and L. C. Burton, “Leakage Currents in Multilayer Ceramic Capacitors,” IEEE Trans. Compon., Hybrids, Manuf. Technol., 7 [4] 443-453 (1984).
    [24] R. Munikoti and P. Dhar, “Highly Accelerated Life Testing (HALT) for Multilayer Ceramic Capacitor Qualification,” IEEE Trans. Compon., Hybrids, Manuf. Technol., CHMT-11 [4] 342-345 (1988).
    [25] R. E. Doty and J. J. Vajo, “A Study of Field-Assisted Silver Migration in a Low Temperature Cofirable Ceramic”; pp. 465-74 in ISHM 1995 Proceedings. International Society for Hybrid Microelectronics, Reston, VA, 1995.
    [26] P. Shewmon, Diffusion in Solids 2nd Edition; pp.343-344. McGraw-Hill, New York, 1975.
    [27] T. Kaneko, “Theoretical concentration profile from a two-step field-assisted diffusion process in glass,” J. Phys. D : Appl. Phys., 18 [8] 1597-1608 (1985).
    [28] T. Kaneko, “A flux-step boundary condition solution to the field-enhanced diffusion process in glass,” J. Phys. D : Appl. Phys., 18 [14] 2233-2240 (1985).
    [29] T. Kaneko, “A two-step field-assisted diffusion profile of Ag+ in glass,” J. Mat. Sci. Lett., 7 [9] 999-1002 (1988).
    [30] D. Timpel and K. Scheerchmidt, “Molecular dynamics investigations of silver diffusion in glass,” J. Non. Crys. Solids, 232 245-251(1998)
    [31] G. H. Frischat, Ionic Diffusion in Oxide Glass; pp.173 Trans Tech, OH, 1975.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE