研究生: |
劉又欣 Yu-Hsin Liu |
---|---|
論文名稱: |
銀與玻璃陶瓷系統之界面反應 Interfacial Reactions Between Silver and Glass Ceramics Substrate |
指導教授: |
簡朝和
Jau-Ho Jean |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 1冊(21頁) |
中文關鍵詞: | 電阻失效 、擴散 、可靠度 、加速壽命測試 、玻璃陶瓷 、共燒 、二次離子質譜儀 |
外文關鍵詞: | Resistance Degradation, Field-Assisted Diffusion, Reliability, Highly Accelerated Life Test, HALT, Glass Ceramics, Cofire, SIMS |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討已塗佈銀電極的鈣硼矽玻璃陶瓷(CBSG+Al2O3)在施加電場後,電阻失效的機制及其界面反應。首先,以電子槍蒸鍍系統披覆厚度約為80 nm的銀膜在已燒結緻密的CBSG+Al2O3試片上,經1000 V電壓的作用下,於56小時後始發現試片有電阻失效現象。經由二次離子質譜儀分析結果指出:在電場作用下,銀在CBSG+Al2O3試片中擴散所需的活化能為73 kJ/mol。此外,在高溫共燒及非共燒的試片經二次離子質譜儀分析後,可推算出銀在CBSG+Al2O3中的擴散活化能分別為68及70 kJ/mol。而銀與不同厚度的CBSG+ Al2O3試片,經共燒後的厚度平方與電阻失效時間呈線性關係,符合動力學的擴散通式。針對全部已發生電阻失效的試片,利用陶瓷電容器通用的可靠度公式可估算出該活化能介於58-63 kJ/mol之間。證實了塗佈銀電極的CBSG+ Al2O3試片,在外加電場作用下,銀離子擴散為試片發生電阻失效現象的主因。
[1] J. H. Jean and C. R. Chang, “Interfacial Reaction Kinetics between Silver and Ceramic-Filled Glass Substrate,” J. Am. Ceram. Soc., 87 [7] 1287-1293 (2004).
[2] K. B. Shim, N. T. Cho, and S. W. Lee, “Silver diffusion and microstructure in LTCC multilayer couplers for high frequency applications,” J. Mat. Sci., 35 [4] 813-820 (2000).
[3] H. Kishi, Y. Mizuno and H. Chazono, “Base-Metal-Electrode Multilayer Ceramic Capacitors:Past, Present and Future Perspectives,” Jpn. J. Appl. Phys., 42 [1] 1-15 (2003).
[4] Y. Shimada, K. Utsumi, M. Suzuki, H. Takamizawa, M. Nitta, and T.
Watari, “Low Firing Temperature Multilayer Glass-Ceramic Substrate,” IEEE Trans. Compon., Hybrids, Manuf. Technol., CHMT-6 [4] 382-388 (1984).
[5] S. H. Knickerbocker, A. H. Kumar, and L. W. Herron, “Cordierite Glass-Ceramics for Multilayer Ceramic Packaging, ” Am. Ceram. Soc. Bull., 72 [1] 90-95 (1993).
[6] R. R. Tummala, “Ceramic and Glass-Ceramic Packaging in the 1990s,” J. Am. Ceram. Soc., 74 [5] 895-908 (1991).
[7] C. R. Chang and J. H. Jean, “Crystallization Kinetics and Mechanism of Low-Dielectric, Low-Temperature, Cofirable CaO-B2O3-SiO2 Glass-Ceramics,” J. Am. Ceram. Soc., 82 [7] 1725-32 (1999).
[8] J. H. Jean, Y. C. Fang, S. X. Dai, R. F. Huang, and D. L. Wilcox Sr., “Devitrification Kinetics and Mechanism of K2O-CaO-SrO-BaO-B2O3-SiO2,” J. Am. Ceram. Soc., 84 [6] 1354-60 (2001).
[9] J. I. Steinberg, S. J. Horowitz, and R. J. Bacher, “Low-Temperature Cofired Tape Dielectric Material Systems for Multilayer Interconnections”; pp. 31-39 in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices. Edited by J. B. Blum and W. R. Cannon. American Ceramic Society, Westerville, OH, 1986.
[10] D. M. Mattox, S. R. Gurkovich, J. A. Olenick, and K. M. Mason, “Low Dielectric Constant, Alumina-Compatible, Co-fired Multilayer Substrate, ” Ceram. Eng. Sci. Proc., 9 [11-12] 1567-78 (1988).
[11] K. Niwa, N. Kamehara, H. Yokoyama, K. Yokouchi, and K. Kurihara, “Multilayer Ceramic Circuit Board with Copper Conductor”; pp. 41-47 in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices. Edited by J. B. Blum and W. R. Cannon. American Ceramic Society, Westerville, OH, 1986.
[12] T. K. Gupta and J. H. Jean, “Principles of the Development of a Silica Dielectric for Microelectronic Packaging,” J. Mat. Res., 11 [1] 243-63 (1996).
[13] Technical publication of Ferro Tape-A6, Ferro Corp., Santa Barbara, CA, 1996
[14] S. X. Dai, R. F. Huang, and D. L. Wilcox Sr, “Use of Titanates To Achieve a Temperature Stable LTCC Dielectric for Wireless Applications,” J. Am. Ceram. Soc., 85 [4] 828-32 (2002).
[15] J. R. Lloyd, J. Clemens and R. Snede, “Copper Metallization Relaibility,” Microelectronics Reliability, 39 [11] 1595-1602 (1999).
[16] M. V. Slinkina and G. I. Donstov, “Diffusional penetration of silver from electrodes into PZT ceramics,” J. Mat. Sci., 28 [19] 5189-5192 (1993).
[17] D. J. Gasper, F. K. Patterson, and B. L. Irolido, “Silver Reliability in a Multilayer Ceramic Packaging”; pp. 246-55 in ISHM 1988 Proceedings. International Society for Hybrid Microelectronics, Reston, VA, 1988.
[18] C. R. S. Needs, “Environmental Durability of Silver Multilayer Circuits”; pp. 173-78 in ISHM 1994 Proceedings. International Society for Hybrid Microelectronics, Reston, VA, 1994.
[19] D. E. Riemer, “Material Selection and Design Guidelines for Migration-Resistant Thick-Film Circuits with Silver-Bearing Conductors”; pp. 287-92 in ECC 31st Proceedings (Atlanta, GA). 1981.
[20] A. Hornung, “Diffusion of Silver in Borosilicate Glass”; pp. 250-55 in ECC 18th Proceedings (Atlanta, GA). 1968.
[21] T. Martin and D. Schroefer, “Reliability Analysis of LTCC MCM’s Utilizing Silver Conductives”; pp. 295-300 in ISHM 1994 Proceedings. International Society for Hybrid Microelectronics, Reston, VA, 1994.
[22] I. K. Yoo, L. C. Burton and F. W. Stephenson, “Electrical Conduction Mechanisms of Barium-Titanate-Based Thick-Film Capacitors,” IEEE Trans. Compon., Hybrids. Manuf. Technol., CMT-10 [2] 274-282 (1987).
[23] H. Y. Lee, K. C. Lee, J. N. Schunke and L. C. Burton, “Leakage Currents in Multilayer Ceramic Capacitors,” IEEE Trans. Compon., Hybrids, Manuf. Technol., 7 [4] 443-453 (1984).
[24] R. Munikoti and P. Dhar, “Highly Accelerated Life Testing (HALT) for Multilayer Ceramic Capacitor Qualification,” IEEE Trans. Compon., Hybrids, Manuf. Technol., CHMT-11 [4] 342-345 (1988).
[25] R. E. Doty and J. J. Vajo, “A Study of Field-Assisted Silver Migration in a Low Temperature Cofirable Ceramic”; pp. 465-74 in ISHM 1995 Proceedings. International Society for Hybrid Microelectronics, Reston, VA, 1995.
[26] P. Shewmon, Diffusion in Solids 2nd Edition; pp.343-344. McGraw-Hill, New York, 1975.
[27] T. Kaneko, “Theoretical concentration profile from a two-step field-assisted diffusion process in glass,” J. Phys. D : Appl. Phys., 18 [8] 1597-1608 (1985).
[28] T. Kaneko, “A flux-step boundary condition solution to the field-enhanced diffusion process in glass,” J. Phys. D : Appl. Phys., 18 [14] 2233-2240 (1985).
[29] T. Kaneko, “A two-step field-assisted diffusion profile of Ag+ in glass,” J. Mat. Sci. Lett., 7 [9] 999-1002 (1988).
[30] D. Timpel and K. Scheerchmidt, “Molecular dynamics investigations of silver diffusion in glass,” J. Non. Crys. Solids, 232 245-251(1998)
[31] G. H. Frischat, Ionic Diffusion in Oxide Glass; pp.173 Trans Tech, OH, 1975.