研究生: |
吳宗晟 Zong-Cheng Wu |
---|---|
論文名稱: |
適用於可移動式WiMAX 通訊之低面積複雜度的低密度奇偶檢查碼解碼器 An LDPC decoder with low area complexity for mobile WiMAX |
指導教授: |
翁詠祿
Yeong-Luh Ueng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 45 |
中文關鍵詞: | 低密度奇偶檢查碼 、解碼器 、超大型積體電路 、最小和演算法 |
外文關鍵詞: | LDPC code, decoder, VLSI, min-sum algorithm, IEEE 802.16e standard |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中, 我們提供了一個兩層式的比較器, 並且將這個比較器使用於之前的所提出的類循環低密度奇偶檢查碼解碼的架構之上, 用來縮短IEEE 802.16e standard 的類循環低密度奇偶檢查碼(QC-LDPC) 的解碼時間, 且使用這種比較器不至於增加過多的硬體面積。相較於之前的硬體架構,能夠減少33%的比較週期,而面積的耗費幾乎與之前相等。解碼器的硬體實現是依序地對相似的奇偶檢查矩陣的子矩陣Hl 來做解碼的運算, 而Hl 則是從類循環低密度奇偶檢查碼的奇偶檢查矩陣H 所衍生出來的子矩陣,Hl的數量則和字碼的長度成正比。在整個電路解碼的過程中,非本質的數質(Extrinsic values) 可以在經由這些子矩陣在奇偶檢查位置的重疊結構來做訊息的交換。因為Hl是奇偶檢查矩陣H 的子矩陣,所以Hl 的維度遠小於H, 以至於在硬體的實作上, 電路互相連接的複雜度也可因此而降低許多。另外, 我們伴隨著使用兩層式的比較器, 將原本所須要的比較週期數從3減少到2,有33%的減少,而面積部分幾乎沒有而外的增加。另外, 我們配合著管線化的技巧地使用來增加整個解碼的吞吐量,而且因為有做管線化的處理,可以使整個解碼器整個硬體的使用率大大地增加。藉此, 可以提供一個符合吞吐量要求(30Mbps)具有低面積及低複雜度的解碼硬體, 且適用於多種不同長度的低密度奇偶檢查碼的解碼器。
In this thesis, we propose a computing unit, i.e., two-stage comparator, to accelerate the decoding of quasi-cyclic low-density parity-check (QC-LDPC) codes used in the IEEE 802.16e standards based on a previously proposed decoding
architecture but with small parallelism. The decoding is implemented by sequentially decoding block codes with identical parity-check matrix Hl derived from the parity-check matrix H of the QC-LDPC code. Extrinsic values
are exchanged among these block codes since the code bits of block codes are overlapped. Since the dimensions of Hl are much smaller than those of H, the complexity of interconnection can be reduced. With the proposed two-stage
comparator, the number of cycles of comparison is reduced. In addition, a pipeline architecture is used to increase the decoding throughput. The proposed decoder has low area complexity but with satisfactory throughput and the scalability to support LDPC codes with various lengths.
[1] R. Gallager, ”Low-density parity-check Codes,” IRE Trans. Inf. Theory,
vol. 7, pp. 21-28, Jan. 1962.
[2] D. Mackay, “Good error-correcting codes based on very sparse matrices,”
IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.
[3] Part 16: Air interface for fixed and mobile broadband wireless access systems
amendment for physical and medium access control layers for combined
fixed and mobile operation in licensed bands, IEEE P802.16e-2005,
2005.
[4] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inform. Theory, vol. IT-27, pp. 533-547, Sep. 1981.
[5] M. Fossorier, M. Mihaljevic, and H. Imai, ”Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation”,
IEEE Trans. Commum., vol. 47, pp. 673-680, May 1999.
[6] J. Chen and M. Fossorier, ”Density evolution for two improved BPbased
decoding algorithms of LDPC codes,” IEEE Commum. Lett., vol. 6,
pp. 208-210, May 2002.
[7] A. Blanksby and C. Howland, ”A 690-mW 1-Gb/s, rate-1/2 low-density
parity-check code decoder,” IEEE J. Solid-State Circuits, vol. 37, no. 3,
pp. 404-412, Mar. 2002.
[8] M. M. Mansour and N. R. Shanbhag, ”High-throughput LDPC decoders,”
IEEE Trans. VLSI System, vol. 11, no. 6, pp. 976-996, Dec. 2003.
[9] Y. L. Ueng and C. C. Cheng, ”A fast-convergence decoding method and
VLSI decoder architecture for irregular LDPC codes used in the IEEE
802.16e standard,” in Proc. IEEE 66st Semiannual Vehicular Tec. Conf.,
Baltimore, USA, Sept. 30-Oct. 3, 2007.
[10] D.E Hocevar, ”A reduced complexity decoder architecture via layered
decoding of LDPC codes,” IEEE Workshop on Signal Processing Systems,
2004 (SIPS ’04) pp. 107-112, 13-15 Oct. 2004.
[11] D.E Hovevar, ”LDPC code construction with flexible hardware implementation”,
in Proc. IEEE Int. Conf. Commu, Anchorage, AK, pp. 2708-2712,
11-15 May 2003.
[12] T. Brack, M. Alles, F. Kienle, and N. Wehn, ”A synthesizable IP core for
WiMAX 802.16e LDPC code decoding,” in Proc. IEEE Annual International
Symposium on Personal Indoor and Mobile Radio Communications
(PIMRC 2006), Helsinki, Finland, 11-14 September, 2006.
[13] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, ”An 8.29mm2 52-mW
multi-mode LDPC decoder design for Mobile WiMAX system in 0.13μm
CMOS process” IEEE J. Solid-State Circuits, vol.43, pp. 672-683, March
2008.
[14] C.-H. Liu, S.-W. Yen, C.-L. Chen, H.-C. Chang, C.Y. Lee, Y.-S. Hsu, and
S.-J. Jou, ”An LDPC decoder chip based on self-routing network for IEEE
802.16e Applications,” IEEE J. Solid-State Circuits, vol.43, pp. 684-694,
March 2008.
[15] Y.-L. Ueng, C.-J. Yang, Z.-C. Wu, C.-E. Wu, and Y.-L. Wang, ”VLSI
decoding architecture with improved convergence speed and reduced de-
coding latency for irregular LDPC codes in WiMAX,” in Proc. IEEE
International Symposium on Circuits and Systems, Seattle, USA, 18-21,
May, 2008 .
[16] C.-H. Liu, S.-W. Yen, C.-L. Chen, H.-C. Chang, C.Y. Lee, Y.-S. Hsu, and
S.-J. Jou, ”An LDPC decoder chip based on self-routing network for IEEE
802.16e Applications,” IEEE J. Solid-State Circuits, vol.43, pp. 684-694,
March 2008.
[17] C.-E. Wu, “Memory access for QC-LDPC decoder with fast convergence
speed”M.S Thesis, National Tsing Hua University, Hsinchu, Taiwan,
R.O.C., August 2008 .