研究生: |
孫家緯 Sun, Chia-Wei |
---|---|
論文名稱: |
高中生在線性函數之事件相關電位研究 An Event-Related Potential Study in Linear Functions for High School Students |
指導教授: |
許慧玉
Hsu, Hui-Yu |
口試委員: |
鄭英豪
Cheng, Ying-Hao 陳建誠 Chen, Jian-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 事件相關電位 、腦波 、函數表徵轉換 、一般資優 、高中生 |
外文關鍵詞: | Event-Related Potential, EEG, Function Representation Transformation, General Giftedness, High School Students |
相關次數: | 點閱:73 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,探究不同函數關係式(標準變因)與不同變數(熟悉變因)對高中生數學表現的影響。透過事件相關電位(Event-Related Potential, ERP)技術,了解臺灣高中生在函數圖形與函數關係式表徵之間轉換的大腦皮質活動。本研究對34名來自新竹與苗栗地區10年級和11年級高中生進行抽樣調查,並以一般資優因子作為學生分類憑據,進一步探討這兩個因子對高中生數學函數轉換能力的影響。數據分析將透過兩種方式進行分析:第一種為行為測量,分析一般資優因子在函數圖形與函數關係式表徵之間轉換問題時的答題正確率和答對所需的反應時間;第二種為腦電生理訊號測量,主要透過ERP成分和腦波平均振幅分析一般資優因子對於大腦不同區域反應的差異。
研究結果分為兩部分介紹:(1) 在行為測量方面,一般資優因子、標準因子和熟悉因子在答題正確率和答對反應時間無顯著差異。然而,資優組學生整體表現在答題正確率上優於非資優組,反應時間則較長。(2) 在腦電生理訊號方面,在記憶圖形並轉換成函數關係式的S1階段和確認答案的S2階段,單獨探討資優組和非資優組學生,在不同腦區的P100和P300成分均受到標準與熟悉因子的影響而有顯著差異。
In this study, the impact of different functional expressions (standard variable) and different variables (familiar variable) on high school students' mathematical performance is explored. By utilizing Event-Related Potential (ERP) technology, the aim is to understand the cortical activities of Taiwanese high school students during the transformation between function graphs and function expressions. This study conducted a sample survey of 34 high school students in the 10th and 11th grades from the Hsinchu and Miaoli regions, using general giftedness factors as a basis for student classification. The effects of these two factors on high school students' abilities to transform mathematical functions were further investigated. Data analysis will be conducted in two ways: the first method involves behavioral measurements, analyzing the accuracy rate and response time required to answer questions related to the transformation between function graphs and function expressions based on general giftedness factors. The second method involves electrophysiological signal measurements, primarily through ERP components and average EEG amplitude to analyze the differences in responses from different brain regions affected by general giftedness factors.
The research results are introduced in two parts: (1) In terms of behavioral measurements, there is no significant difference in the accuracy rate and response time between general giftedness factors, standard factors, and familiar factors. However, the overall performance of gifted students in accuracy rates is superior to that of non-gifted students, with longer response times. (2) In terms of electrophysiological signals, during the S1 stage of memorizing graphs and transforming them into function expressions and the S2 stage of confirming answers, the P100 and P300 components in different brain regions of gifted and non-gifted students are significantly affected by standard and familiar factors.
張玟溢(2020)。臺灣、美國、新加坡國中函數主題教材之比較研究。國立嘉義大學數理教育研究所碩士論文,嘉義市。 取自https://hdl.handle.net/11296/ufkmbj
Acevedo Nistal, A., Van Dooren, W., Clarebout, G., Elen, J., & Verschaffel, L. (2009). Conceptualising, investigating and stimulating representational flexibility in mathematical problem solving and learning: a critical review. ZDM, 41, 627-636.
Akkoç, H., & Tall, D. (2002). The simplicity, complexity and complication of the function concept. Paper presented at the PME conference.
Allison, T., McCarthy, G., Nobre, A., Puce, A., & Belger, A. (1994). Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cerebral cortex, 4(5), 544-554.
Anderson, J. R. (2009). How can the human mind occur in the physical universe? : Oxford University Press.
Anderson, J. R., Betts, S., Ferris, J. L., & Fincham, J. M. (2011). Cognitive and metacognitive activity in mathematical problem solving: prefrontal and parietal patterns. Cognitive, Affective, & Behavioral Neuroscience, 11, 52-67.
Bonnefond, M., Kaliuzhna, M., Van der Henst, J.-B., & De Neys, W. (2014). Disabling conditional inferences: an EEG study. Neuropsychologia, 56, 255-262.
Bonnefond, M., & Van der Henst, J.-B. (2013). Deduction electrified: ERPs elicited by the processing of words in conditional arguments. Brain and language, 124(3), 244-256.
Chinnappan, M., & Thomas, M. (2001). Prospective teachers’ perspectives on function representations. Paper presented at the Proceedings of the 24th annual conference of the Mathematics Education Research Group of Australasia.
Cohen, L., Dehaene, S., Chochon, F., Lehericy, S., & Naccache, L. (2000). Language and calculation within the parietal lobe: a combined cognitive, anatomical and fMRI study. Neuropsychologia, 38(10), 1426-1440.
Connolly, J. F., Phillips, N. A., & Forbes, K. A. (1995). The effects of phonological and semantic features of sentence-ending words on visual event-related brain potentials. Electroencephalography and clinical neurophysiology, 94(4), 276-287.
Danker, J. F., & Anderson, J. R. (2007). The roles of prefrontal and posterior parietal cortex in algebra problem solving: A case of using cognitive modeling to inform neuroimaging data. Neuroimage, 35(3), 1365-1377.
Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). Main coding schemes used in connectionist models of reading. Trends in Cognitive Sciences, 7(9), 335-341.
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20(3-6), 487-506.
Di Russo, F., Martínez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Human brain mapping, 15(2), 95-111.
Donchin, E. (1981). Surprise!… surprise? Psychophysiology, 18(5), 493-513.
Donchin, E. (1988). Is the P300 component a measure of context updating? Behavioral and brain Sciennce. Science, 11, 357-374.
Doyle, M. C., Rugg, M. D., & Wells, T. (1996). A comparison of the electrophysiological effects of formal and repetition priming. Psychophysiology, 33(2), 132-147.
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational studies in mathematics, 61(1-2), 103-131.
Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology, 45(1), 152-170.
Gagatsis*, A., & Shiakalli, M. (2004). Ability to translate from one representation of the concept of function to another and mathematical problem solving. Educational psychology, 24(5), 645-657.
Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., & Neuper, C. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia, 47(2), 604-608.
Grabner, R. H., Reishofer, G., Koschutnig, K., & Ebner, F. (2011). Brain correlates of mathematical competence in processing mathematical representations. Frontiers in human neuroscience, 5, 130.
Hamilton, J. P., Mirkin, M., & Polk, T. A. (2006). Category-level contributions to the alphanumeric category effect in visual search. Psychonomic Bulletin & Review, 13, 1074-1077.
Han, J., Cao, B., Cao, Y., Gao, H., & Li, F. (2016). The role of right frontal brain regions in integration of spatial relation. Neuropsychologia, 86, 29-37.
Harter, M. R., Aine, C., & Schroeder, C. (1982). Hemispheric differences in the neural processing of stimulus location and type: effects of selective attention on visual evoked potentials. Neuropsychologia, 20(4), 421-438.
Hatano, G., & Oura, Y. (2003). Commentary: Reconceptualizing school learning using insight from expertise research. Educational researcher, 32(8), 26-29.
Heinze, A., Star, J. R., & Verschaffel, L. (2009). Flexible and adaptive use of strategies and representations in mathematics education. In (Vol. 41, pp. 535-540): Springer.
Heinze, H., & Mangun, G. (1995). Electrophysiological signs of sustained and transient attention to spatial locations. Neuropsychologia, 33(7), 889-908.
Heitland, I., Kenemans, J., Oosting, R., Baas, J., & Böcker, K. (2013). Auditory event-related potentials (P3a, P3b) and genetic variants within the dopamine and serotonin system in healthy females. Behavioural brain research, 249, 55-64.
Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences, 95(3), 781-787.
Iguchi, Y., & Hashimoto, I. (2000). Sequential information processing during a mental arithmetic is reflected in the time course of event-related brain potentials. Clinical Neurophysiology, 111(2), 204-213.
Janvier, C. (1987). Translation processes in mathematics education. Problems of representation in the teaching and learning of mathematics, 27, 32.
Jeffreys, D. (1989). A face-responsive potential recorded from the human scalp. Experimental brain research, 78, 193-202.
Johnson Jr, R. (1993). On the neural generators of the P300 component of the event‐related potential. Psychophysiology, 30(1), 90-97.
Jonides, J., & Gleitman, H. (1972). A conceptual category effect in visual search: O as letter or as digit. Perception & Psychophysics, 12(6), 457-460.
Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557-577.
Kramer, A., Schneider, W., Fisk, A., & Donchin, E. (1986). The effects of practice and task structure on components of the event‐related brain potential. Psychophysiology, 23(1), 33-47.
Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Sciences, 4(12), 463-470.
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual review of psychology, 62, 621-647.
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207(4427), 203-205.
Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic association. Nature, 307(5947), 161-163.
Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science, 197(4305), 792-795.
LaBerge, D., & Samuels, S. J. (1974). Toward a theory of automatic information processing in reading. Cognitive psychology, 6(2), 293-323.
Leikin, R., Paz-Baruch, N., & Leikin, M. (2014). Cognitive characteristics of students with superior performance in mathematics. Journal of Individual Differences.
Leikin, R., Waisman, I., & Leikin, M. (2016). Does solving insight-based problems differ from solving learning-based problems? Some evidence from an ERP study. ZDM, 48, 305-319.
Lesh, R. (2000). What Mathematical Abilities Are Most Needed for Success Beyond School in a Technology Based Age of Information?
Lesh, R. (2013). The development of representational abilities in middle school mathematics. In Development of Mental Representation (pp. 323-349): Psychology Press.
Linden, D. E. (2005). The P300: where in the brain is it produced and what does it tell us? The Neuroscientist, 11(6), 563-576.
Luck, S. J. (2014). An introduction to the event-related potential technique: MIT press.
Luck, S. J., Hillyard, S. A., Mouloua, M., Woldorff, M. G., Clark, V. P., & Hawkins, H. L. (1994). Effects of spatial cuing on luminance detectability: psychophysical and electrophysiological evidence for early selection. Journal of experimental psychology: human perception and performance, 20(4), 887.
Mangun, G., & Hillyard, S. (1990). Allocation of visual attention to spatial locations: Tradeoff functions for event-related brain potentials and detection performance. Perception & Psychophysics, 47(6), 532-550.
Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32(1), 4-18.
McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293-299.
NCTM. (2000). Principles and Standards for School Mathematics. National Council of Teachers of Mathematics.
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency: Measures of brain activation versus measures of functional connectivity in the brain. Intelligence, 37(2), 223-229.
Newman, S. D., Willoughby, G., & Pruce, B. (2011). The effect of problem structure on problem-solving: an fMRI study of word versus number problems. Brain research, 1410, 77-88.
Niedeggen, M., & Rösler, F. (1999). N400 effects reflect activation spread during retrieval of arithmetic facts. Psychological Science, 10(3), 271-276.
Nittono, H., Nageishi, Y., Nakajima, Y., & Ullsperger, P. (1999). Event‐related potential correlates of individual differences in working memory capacity. Psychophysiology, 36(6), 745-754.
O'Boyle, M. W. (2005). Some Current Findings on Brain Characteristics of the Mathematically Gifted Adolescent. International Education Journal, 6(2), 247-251.
Paller, K. A. (1994). The neural substrates of cognitive event-related potentials: A review of animal models of P3. Cognitive electrophysiology, 300-333.
Park, J., Chiang, C., Brannon, E. M., & Woldorff, M. G. (2014). Experience-dependent hemispheric specialization of letters and numbers is revealed in early visual processing. Journal of cognitive neuroscience, 26(10), 2239-2249.
Park, J., Hebrank, A., Polk, T. A., & Park, D. C. (2012). Neural dissociation of number from letter recognition and its relationship to parietal numerical processing. Journal of cognitive neuroscience, 24(1), 39-50.
Paz-Caballero, M. D., & García-Austt, E. (1992). ERP components related to stimulus selection processes. Electroencephalography and clinical neurophysiology, 82(5), 369-376.
Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of clinical neurophysiology, 9(4), 456-479.
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.
Polk, T., & Farah, M. (1995). Late experience alters vision. Nature.
Polk, T. A., & Farah, M. J. (1998). The neural development and organization of letter recognition: Evidence from functional neuroimaging, computational modeling, and behavioral studies. Proceedings of the National Academy of Sciences, 95(3), 847-852.
Polk, T. A., Stallcup, M., Aguirre, G. K., Alsop, D. C., D'esposito, M., Detre, J. A., & Farah, M. J. (2002). Neural specialization for letter recognition. Journal of cognitive neuroscience, 14(2), 145-159.
Ponte, J. P. d. (1992). The history of the concept of function and some educational implications. The Mathematics Educator, 3-8.
Prescott, J., Gavrilescu, M., Cunnington, R., O'Boyle, M. W., & Egan, G. F. (2010). Enhanced brain connectivity in math-gifted adolescents: An fMRI study using mental rotation. Cognitive Neuroscience, 1(4), 277-288.
Rossion, B., Joyce, C. A., Cottrell, G. W., & Tarr, M. J. (2003). Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. Neuroimage, 20(3), 1609-1624.
Roux, F.-E., Lubrano, V., Lauwers-Cances, V., Giussani, C., & Démonet, J.-F. (2008). Cortical areas involved in Arabic number reading. Neurology, 70(3), 210-217.
Schlaggar, B. L., & McCandliss, B. D. (2007). Development of neural systems for reading. Annu. Rev. Neurosci., 30, 475-503.
Schmitt, H., Ferdinand, N. K., & Kray, J. (2014). Age-differential effects on updating cue information: Evidence from event-related potentials. Cognitive, Affective, & Behavioral Neuroscience, 14, 1115-1131.
Shum, J., Hermes, D., Foster, B. L., Dastjerdi, M., Rangarajan, V., Winawer, J., . . . Parvizi, J. (2013). A brain area for visual numerals. Journal of Neuroscience, 33(16), 6709-6715.
Sohn, M.-H., Goode, A., Koedinger, K. R., Stenger, V. A., Fissell, K., Carter, C. S., & Anderson, J. R. (2004). Behavioral equivalence, but not neural equivalence—neural evidence of alternative strategies in mathematical thinking. Nature neuroscience, 7(11), 1193-1194.
Spehlmann, R. (1965). The averaged electrical responses to diffuse and to patterned light in the human. Electroencephalography and clinical neurophysiology, 19(6), 560-569.
Stadler, W., Klimesch, W., Pouthas, V., & Ragot, R. (2006). Differential effects of the stimulus sequence on CNV and P300. Brain research, 1123(1), 157-167.
Sternberg, R. J. (2003). What is an “expert student?”. Educational researcher, 32(8), 5-9.
Stewart, S., & Thomas, M. O. (2007). Embodied, symbolic and formal thinking in linear algebra. International Journal of Mathematical Education in Science and Technology, 38(7), 927-937.
Stocco, A., & Anderson, J. R. (2008). Endogenous control and task representation: an fMRI study in algebraic problem-solving. Journal of cognitive neuroscience, 20(7), 1300-1314.
Sur, S., & Sinha, V. K. (2009). Event-related potential: An overview. Industrial psychiatry journal, 18(1), 70.
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational studies in mathematics, 12(2), 151-169.
Tanaka, J., Luu, P., Weisbrod, M., & Kiefer, M. (1999). Tracking the time course of object categorization using event-related potentials. NeuroReport, 10(4), 829-835.
Thomas, M. O., & Hong, Y. Y. (2001). Representations as conceptual tool: Process and structural perspectives. Paper presented at the PME CONFERENCE.
Thomas, M. O. (2006). Developing versatility in mathematical thinking. Proceedings of retirement as process and concept: A festshcrift for Eddie Gray and David Tall, 223-241.
Thomas, M. O., Wilson, A. J., Corballis, M. C., & Lim, V. K. (2008). Neuropsychological evidence for the role of graphical and algebraic representations in understanding function. Paper presented at the Navigating currents and charting directions, proceedings of the 30th annual conference of the mathematics education research group of Australasia.
Thomas, M. O., Wilson, A. J., Corballis, M. C., Lim, V. K., & Yoon, C. (2010). Evidence from cognitive neuroscience for the role of graphical and algebraic representations in understanding function. ZDM, 42, 607-619.
Trewartha, K. M., Spilka, M. J., Penhune, V. B., Li, K. Z., & Phillips, N. A. (2013). Context-updating processes facilitate response reprogramming in younger but not older adults. Psychology and aging, 28(3), 701.
Van Dellen, H., Brookhuis, K., Mulder, G., Okita, T., & Mulder, L. (1985). Evoked potential correlates of practice in a visual search task. Clinical and experimental neurophysiology, 132-155.
Van Dyke, F., & White, A. (2004). Examining students' reluctance to use graphs. The Mathematics Teacher, 98(2), 110-117.
Van Voorhis, S., & Hillyard, S. A. (1977). Visual evoked potentials and selective attention to points in space. Perception & Psychophysics, 22(1), 54-62.
Verleger, R. (1988). Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. Behavioral and brain sciences, 11(3), 343-356.
Waisman, I., Leikin, M., Shaul, S., & Leikin, R. (2014). Brain activity associated with translation between graphical and symbolic representations of functions in generally gifted and excelling in mathematics adolescents. International Journal of Science and Mathematics Education, 12, 669-696.
Williams, C. G. (1998). Using concept maps to assess conceptual knowledge of function. Journal for Research in Mathematics Education, 29(4), 414-421.
Wilson, G. F., Swain, C. R., & Ullsperger, P. (1998). ERP components elicited in response to warning stimuli: The influence of task difficulty. Biological Psychology, 47(2), 137-158.
Yerushalmy, M. (2006). Slower algebra students meet faster tools: Solving algebra word problems with graphing software. Journal for Research in Mathematics Education, 37(5), 356-387.
Zamarian, L., Ischebeck, A., & Delazer, M. (2009). Neuroscience of learning arithmetic—Evidence from brain imaging studies. Neuroscience & Biobehavioral Reviews, 33(6), 909-925.
Zhang, L., Xin, Z., Li, F., Wang, Q., Ding, C., & Li, H. (2012). An ERP study on the processing of common fractions. Experimental brain research, 217, 25-34.
Zhang, Z.-J., Wang, X.-M., & McAlonan, G. M. (2012). Neural acupuncture unit: a new concept for interpreting effects and mechanisms of acupuncture. Evidence-based complementary and alternative medicine, 2012.
Zohar, A. (1990). Mathematical reasoning ability: Its structure, and some aspects of its genetic transmission: Hebrew University of Jerusalem.