簡易檢索 / 詳目顯示

研究生: 何培安
Ho, Pei An
論文名稱: 三維電路之堆疊前測試考慮時序資訊以減低測試介面暫存器需求
Timing Aware Wrapper Cells Reduction for Pre-bond Testing in 3D-ICs
指導教授: 黃婷婷
Hwang,Ting Ting
口試委員: 王俊堯
Wang, Chun Yao
王廷基
Wang, Ting Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 42
中文關鍵詞: 三微積體電路 ,堆疊前測試 ,測試介面暫存器 、掃描暫存器
外文關鍵詞: 3DIC Testing, pre-bond testing, wrapper cells, scan flip-flop
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著晶片設計複雜程度提升,為了減輕晶片中邏輯閘的擁擠情況,利用三維空間的概念來創造晶片堆疊的方式已被廣泛討論。為了提升三維晶片的良率,堆疊前測試扮演了極為重要的腳色。堆疊前測試是用來確保每一層晶圓沒有錯誤產生,與傳統二維晶片測試不同的地方在於,三維晶片是採用矽穿通道 (Through-Silicon-Via) 作為層與層之間的溝通,此特性會導致在作堆疊前測試時,由於層與層之間還未堆疊,那些藉由矽穿通道傳遞訊號的連接端口不具備可測試性設計 (Design for Testa-bility) 所須遵循的兩大原則: 可控制與可觀察,使得測試品質降低。而過往在解決此問題的方法為添加測試介面暫存器到每一個矽穿通道的兩端點。然而,此方法會導致電路面積增加使得設計成本上升。在本文中,藉由重複利用已存在電路內的掃描暫存器,並導入圖形理論的概念來有效降低測試介面暫存器的使用數量,而為了避免重複使用掃描暫存器所帶來的時序違規,掃描暫存器的時序資訊以及電路實體位置均被考慮來避免時序違規的發生。實驗結果顯示我們的方法除了能夠有效降低測試介面暫存器的使用,也不會發生時序違規的情況。


    Three Dimensional Integrated Circuits (3D-ICs) are currently being developed to improve existing 2D designs by providing smaller chip areas, higher performance and lower power consumption. With the short and dense Through-Silicon-Vias (TSVs), multiple dies can be integrated to overcome the barrier of interconnection. However, before 3D-ICs become a viable technology, the understanding of 3D testing issues is still insufficient and there are still many unresolved testing challenges. To ensure the stack yield of future adopting of 3D-SICs, pre-bond testing is needed to provide the known good die (KGD). Since the TSVs are not fully accessible prior to bonding, testing the combinational logic between the scan flip-flops and TSV becomes a complex issue. In order to overcome the limitation of TSV, additional wrapper cells was proposed to be added at the two ends of TSVs to provide controllability and observability. Even though it is a major breakthrough for pre-bond testing, the wrapper cells used by the TSVs lead to significant area overhead and decrease the system performance. For reducing the number of additional wrapper cells, several approaches have proposed solutions by reusing the existing primary inputs/outputs or scan flip-flops to achieve high testability. However, practical timing considerations were overlooked and the number of inserted wrapper cells was still high. In this work, based on the previous work, we modify its algorithm to produce more number of re-used scan flip-flops. Moreover, by considering practical timing and layout information, our approach does not incur any timing violation. Furthermore, with the help of commercial ATPG tool, the re-usability of scan flip-flops can be maximized. Results are presented for 3D-stack implementations of the ITC’99 benchmark circuits.

    1 Introduction 1 2 Previous Work 7 2.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Problem Description 12 3.1 Wrapper Cells Minimization Problem (WCM) . . . . . . . . . . . . . 12 4 Proposed Method 14 4.1 TSV Sets Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Heuristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Experiment Results 26 5.1 Results of Wrapper Cells Reduction . . . . . . . . . . . . . . . . . . . . 29 5.2 Results on ATPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.3 In uence on Wrapper Cells and Reused Scan Flip- ops by Di erent Value of s th and d th . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4 Accurate Edge Construction Criteria . . . . . . . . . . . . . . . . . . . 36 6 Conclusions 39

    [1] M. Agrawal and K. Chakrabarty. A graph-theoretic approach for minimizing the number
    of wrapper cells for pre-bond testing of 3d-stacked ics. In Test Conference (ITC), 2013
    IEEE International, pages 1{10, Sept 2013.
    [2] G.E. Moore. Cramming more components onto integrated circuits. Proceedings of the
    IEEE, 86(1):82{85, Jan 1998.
    [3] Jian-Qiang Lu. 3-d hyperintegration and packaging technologies for micro-nano systems.
    Proceedings of the IEEE, 97(1):18{30, Jan 2009.
    [4] J. Van Olmen et al. 3d stacked ic demonstration using a through silicon via rst
    approach. In Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pages
    1{4, Dec 2008.
    [5] K. Banerjee, S.J. Souri, Pawan Kapur, and K.C. Saraswat. 3-d ics: a novel chip de-
    sign for improving deep-submicrometer interconnect performance and systems-on-chip
    integration. Proceedings of the IEEE, 89(5):602{633, May 2001.
    [6] C.C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari. Bridging the processor-memory
    performance gap with 3d ic technology. Design Test of Computers, IEEE, 22(6):556{
    564, Nov 2005.
    [7] B. Black, D.W. Nelson, C.Webb, and N. Samra. 3d processing technology and its impact
    on ia32 microprocessors. In Computer Design: VLSI in Computers and Processors,2004. ICCD 2004. Proceedings. IEEE International Conference on, pages 316{318, Oct
    2004.
    [8] Dae Hyun Kim, Krit Athikulwongse, and Sung Kyu Lim. A study of through-silicon-via
    impact on the 3d stacked ic layout. In Proceedings of the 2009 International Conference
    on Computer-Aided Design, ICCAD '09, pages 674{680, New York, NY, USA, 2009.
    ACM.
    [9] E.J. Marinissen and Y. Zorian. Testing 3d chips containing through-silicon vias. In Test
    Conference, 2009. ITC 2009. International, pages 1{11, Nov 2009.
    [10] E.J. Marinissen, Chun-Chuan Chi, J. Verbree, and M. Konijnenburg. 3d dft architecture
    for pre-bond and post-bond testing. In 3D Systems Integration Conference (3DIC), 2010
    IEEE International, pages 1{8, Nov 2010.
    [11] E.J. Marinissen, J. Verbree, and M. Konijnenburg. A structured and scalable test access
    architecture for tsv-based 3d stacked ics. In VLSI Test Symposium (VTS), 2010 28th,
    pages 269{274, April 2010.
    [12] Jia Li and Dong Xiang. Dft optimization for pre-bond testing of 3d-sics containing tsvs.
    In Computer Design (ICCD), 2010 IEEE International Conference on, pages 474{479,
    Oct 2010.
    [13] A. Kumar, S.M. Reddy, I. Pomeranz, and B. Becker. Hyper-graph based partitioning
    to reduce dft cost for pre-bond 3d-ic testing. In Design, Automation Test in Europe
    Conference Exhibition (DATE), 2011, pages 1{6, March 2011.
    [14] Itc'99 benchmarks. http://www.cerc.utexas.edu/itc99-benchmarks/bench.html.
    [15] RichardM. Karp. Reducibility among combinatorial problems. In RaymondE. Miller,
    JamesW. Thatcher, and JeanD. Bohlinger, editors, Complexity of Computer Computa-
    tions, The IBM Research Symposia Series, pages 85{103. Springer US, 1972.
    [16] Chia-Jeng Tseng and D.P. Siewiorek. Automated synthesis of data paths in digital sys-
    tems. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
    on, 5(3):379{395, July 1986.
    [17] J. Bhasker and Tariq Samad. The clique-partitioning problem. Computers & Mathe-
    matics with Applications, 22(6):1 { 11, 1991.
    [18] 1. Ieee standard test access port and boundary scan architecture. IEEE Std 1149.1-2001,
    pages 1{212, July 2001.
    [19] Ieee standard testability method for embedded core-based integrated circuits. IEEE Std
    1500-2005, pages 1{117, 2005.
    [20] RichardM. Karp. Reducibility among combinatorial problems. In RaymondE. Miller,
    JamesW. Thatcher, and JeanD. Bohlinger, editors, Complexity of Computer Computa-
    tions, The IBM Research Symposia Series, pages 85{103. Springer US, 1972.
    [21] RichardM. Karp. Reducibility among combinatorial problems. In RaymondE. Miller,
    JamesW. Thatcher, and JeanD. Bohlinger, editors, Complexity of Computer Computa-
    tions, The IBM Research Symposia Series, pages 85{103. Springer US, 1972.
    [22] Leda library. http://www.algorithmic-solutions.com/leda/index.htm.
    [23] Design compiler. http://www.synopsys.com/Tools/Implementation/RTLSynthesis/
    DesignCompiler/Pages/default.aspx.
    [24] 3d craft. http://cadlab.cs.ucla.edu/three_d/3dic.html.
    [25] N. Selvakkumaran and G. Karypis. Multiobjective hypergraph-partitioning algorithms
    for cut and maximum subdomain-degree minimization. Trans. Comp.-Aided Des. Integ.
    Cir. Sys., 25(3):504{517, November 2006.
    [26] Prime time. http://www.synopsys.com/Tools/Implementation/SignOff/Pages/
    PrimeTime.aspx.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE