研究生: |
徐國懷 Hsu, Kuo-Hwai |
---|---|
論文名稱: |
填充量與真空度對熱管最大熱傳量之影響 Effect of the vacuum pressure and the working fluid inventory to the maximum heat loading (Qmax) of the heat pipe |
指導教授: |
林唯耕
Lin, Wei-Keng |
口試委員: |
高良書
白寶實 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 熱管 、真空壓力 、填充量 、最大熱傳量 、滲透度 、非凝結氣體 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去的十年中,因為晶片製造技術的提升使得電腦的處理速度大幅增加,熱管如今被廣泛的運用在筆記型電腦與個人電腦產品等電子產品。因為熱管工作溫度大多小於100℃,所以其中必須要將空氣抽出以降低壓力,工作流體的雙相變化才較容易發生。因此,熱管的性能不僅取決於幾何參數,如壁厚、管材料,還有工作流體之熱力性能,如潛熱,蒸汽壓力,粘度,壓力和真空。
本文主題是探討真空度與填充量對熱管的影響,利用最大熱傳量實驗平台,測試熱管在0.1torr~10torr真空度下,以及0.5ml~1ml填充量之熱管的最大熱傳量,這些數據將以實驗和模擬做基準比較並得到一理想結果,經過實驗,最大熱傳量在模擬和實驗上之偏差值均小於10 %,實驗顯示當NCG越少,真空度越大時,Qmax會越大,反之則減少,且呈現一指數函數的曲線。而填充量則必須超過熱管毛細結構體積的一定比例,才會使得熱管有最好的效能。
Over the last decade, the computer clock speed drastically increases as the chip manufacturing technique improves. Heat pipe generally is already applied to the heat&removed system, the notebook and other equipments. Due to the reason of the operation temperature of the CPU need to less than 100℃, a high vacuum status of the heat pipe must design for achieved to high heat transport ability. Therefore, the heat pipe performance ability not only depends on the geometric parameters such as heat pipe wall thickness、tube material etc., but also depends on the working fluid thermo properties such as latent heat、 vapor pressure、viscosity、inventory and vacuum pressure etc.. The purpose of this study was to evaluate the effect of the inventory and the vacuum pressure to the maximum heat transport ability of the heat pipe. The experiment was operated under the vacuum pressure of the heat pipe at the range of 0.1torr to 10torr, while the inventory was controlled with the range of 0.5ml to 1ml. The results shown the errors between the experimental data and the theoretical value were within 10%. The experiment was also shown when the higher of the vacuum pressure, the lower of the non&condensable gas (NCG), the higher of the maximum heat transport ability (Qmax). The curve for the Qmax with respect to the vacuum pressure turns out to be an exponential function. Keywords: Heat Pipe, Vacuum Pressure, Maximum Heat Transfer, Non&condensation Gas (NCG), inventory
1. A. Faghri, Heat Pipe Science And Technology, Taylor & Francis, London, 1995.
2. R. Gaugler, “Heat Transfer Device,” U.S. Patent 2350348,1944.
3. L. Trefethen, 1962, “On the Surface Tension Pumping of Liquids or a Possible Role of the Candlewick in Space Exploration,” G.E. Tech. Info., Serial No. 615 D114, 1962.
4. G. Grover, “Evaporation-Condensation Heat Transfer Device,” U.S. Patent 3229759, Application filed 2 Dec. 1963, Approved 18 Jan. 1966.
5. G. Grover, T. Cotter, G. Erikson, 1964, “Structure of Very High Thermal Conductance,” J. Appl. Phys., Vol. 35, pp. 1990-1991, 1964.
6. T. P. Cotter, “Theory of Heat Pipe,” Los Alamos Scientific Laboratory Report No. LA-3246-MS, 1965.
7. B. I. Leefer, “Nuclear Thermionic Energy Converter,” Proc. 20th Power Source Conf., Atlantic City, N.J., pp. 172-175, 1966.
8. J. F. Judge, “RCA Test Thermal Energy Pipe,” J. Missiles and Rockets, pp. 153-155, 1966.
9. P. D. Dunn, D. A. Reay, Heat Pipes, 3rd Edn., Pergamon Press, Oxford, 1982.
10. S. W. Chi, Heat Pipe Theory and Practice, Hemisphere Publishing Washington D. C, 1976.
11. M. N. Ivanovskii, V. P. Sorokin, The Physical Principles of Heat Pipes, Clarendon Press,Oxford, 1982.
12. H. R. Jacobs, J. P. Hartnett, “Thermal Engineering: Emerging Technologies and Critical Phenomena,” Workshop Report, NSF Grant No. CTS-91-04006, pp.139-176, 1991.
13. T. P. Cotter, “Principles and Prospects for Micro Heat Pipes,” Proc. 5th Int. Heat Pipe Conf., Tsukuba, Japan, pp. 328-335, 1984.
14. H. Chen, M. Groll, S. Rosler, “Micro Heat Pipes: Experimental Investigation and Theoretical Modelling,” Proc. 8th Int. Heat Pipe Conf., Beijing, China, 1992.
15. J. Zhou, Z. Yao, J. Zhu, “Experimental Investigation of the Application Characters of Micro Heat Pipe,” Proc. 8th Int. Heat Pipe Conf., Beijing, China, 1992.
16. T. Li, L. Cao, L. Xiang, “Research and Application for the Heat Transfer Performance of Small Heat Pipe,” Proc. 8th Int. Heat Pipe Conf., Beijing, China, 1992.
17. D. Khrustalev, A. Faghri, ”Thermal analysis of a micro heat pipe,” J. Heat transfer, Vol. 116, pp. 189-198, 1994.
18. D. Khrustalev, A. Faghri, ” Thermal Characteristics of Conventional and Flat Miniature Axially Grooved Heat Pipes,” J. Heat transfer, Vol. 11, pp. 1048-1054, 1994.
19. D. Khrustalev, A. Faghri, ” Flat Miniature Heat Pipes With Micro Capillary Grooves,” ASME Journal of Transactions, Vol. 121, pp. 102-109, 1999.
20. Kenichi Namba, Naoki Kimura, Jun Niekawa, Yuichi Kimura, Nobuyuki Hashimoto, ” Heat-Pipes for Electronic Devices Cooling and Evaluation of Their Thermal Performance ”, IEEE InterSociety Conference on Thermal Phenomena, pp.456-459, 1998.
21. Ioan Sauciuc, “ The Design and Testing of the Super Fiber Heat pipes for Electronics Cooling ”, IEEE 16th SEMI-THERM, pp.27-32, 2000.
22. V. Maziuk, “Miniature heat-pipe thermal performance prediction tool software development, “ Applied Thermal Engineering , Vol. 21, pp. 559-571, 2001.
23. Seok Hwman Moon, “Experimental Study on the Performance of Miniature Heat Pipes With Woven-Wire Wick”, IEEE Transaction on components and packing technologies, Vol. 24, No. 4, pp. 1521-3331, 2001.
24. Lanchao Lin, Rengasamy Ponnappan, John Leland, “High Performance Miniature Heat Pipe,” International Journal of Heat and Mass Transfer, Vol. 45, Issue 15, pp. 3131-3142, 2002.
25. Kwang-Soo Kim, ” Heat pipe cooling technology for desktop PC CPU ”, Applied Thermal Engineering, Vol. 23, pp. 1137-1144, 2003.
26. Yasumi Sasaki, Yuichi Kimura, Kenichi Namba, ”The ultra-thin sheet-shaped heat pipe “Pera-flex” ”, 13th International Heat Pipe Conference (13th IHPC), pp.250-255, 2004.
27. P. Tadayon, “Thermal Challenge During Micro- processor Testing,” J. Intel Tech., Q3, 2000.
28. Y. Cao, A. Faghri, “Micro/Miniature Heat Pipes and Operating Limitations,” Proc. ASME HTD, Vol. 236, pp. 55-62, 1994.
29. M. Mochizuki, Y. Saito, K. Goto, T. Nguyen, “Hinged Heat Pipe for Cooling Notebooks PCs,” IEEE SEMI-THERM Symposium, pp. 64-72, 1997.
30. T. Nguyen, M. Mochizuki, K. Mashiko, Y. Saito, I. Sauciuc, R. Boggs, , “Advanced Cooling System Using Miniature Heat Pipes in Mobile PC,” IEEE Transactions on Components and Packaging Technology, Vol. 23, No. 1, pp. 86-90 2000.
31. G. P. Peterson, An Introduction to Heat Pipes, John Wiley & Sons, New York, pp.44-74, 1994.
32. 林哲興, 「微熱管溝槽液-氣接觸面相互影響之分析,」 私立中原大學,機械工程研究所碩士論文, 2004.
33. 依日光, 熱管技術理論實務, 復漢出版社, pp. 8-11, 2000.
34. A. Faghri, 1995, Heat Pipe Science And Technology, Taylor & Francis, London, pp.32-35.
35. P. D. Dunn, D. A. Reay, Heat Pipes, 3rd Edn., Pergamon Press, pp.100-101, 1982.
36. 盧俊彰, 林唯耕, 「滲透度對熱管性能之影響,」 中國機械工程學會第二十二屆全國學術研討會, 2005.
37. C. C. Lu, W. K. Lin, “ Geometric Parameters to Affect the Qmax Value of the Performance Curve for Cylindrical Heat Pipe,” J. Aeronautics Astronautics and Aviation, Series A, Vol. 41, No.1, pp.69-76, 2009.
38. C. C. Lu, W. K. Lin, “ A Novel Measurement Theory for Inventory of Working Fluid and Vacuum Pressure of Heat Pipe,” J. Chinese Institute of Engineers, Vol. 32, 2009.
39. 盧俊彰, 林唯耕, 「成型熱管真空度量測理論與實驗系統之建立,」 J. Advanced Engineering, Vol. 4, No. 4, 2009.
40. 洪佳煌, 「 熱管性能量測平台之靈敏度分析,」 國立清華大學, 工程與系統科學系碩士論文, 2008.