簡易檢索 / 詳目顯示

研究生: 張凱丞
Chang, Kai-Cheng
論文名稱: 一個使用量子近似最佳化演算法解決最小點覆蓋問題的研究
A study of Quantum Approximate Optimization Algorithm for Minimum Vertex Cover problem
指導教授: 林瀚仚
Lin, Han-Hsuan
口試委員: 韓永楷
Hon, Wing-Kai
賴青沂
Lai, Ching-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 43
中文關鍵詞: 量子近似最佳化演算法最小點覆蓋近似演算法
外文關鍵詞: Quantum Approximation Optimization Algorithm, Minimum vertex cover, Approximation algorithm
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子近似最佳化演算法[1]已被提出來解決組合問題,例如最大割問題,但它無法直接應於有約束條件的問題。先前的研究使用懲罰函式法或量子交替算子擬設[2]來處理這些約束條件。在這篇論文中,我們以最小頂點覆蓋問題作為測試案例,分析了將約束條件引入量子近似最佳化演算法的兩種方法之間的差異。同時,我們遵循Brayvi等人[3]的方法,通過遞迴方法增強量子交替算子擬設並使用古典電腦上的模擬器來測試算法的性能。我們發現,使用遞迴方法顯著提高了性能,優於古典貪婪算法。最後,我們將深度為1的量子算法轉化為遞迴式古典近似最佳化算法,並在更大的圖上進行了測試。結果顯示,在邊數較多的隨機圖上,遞迴式古典近似最佳化算法的性能在我們的測試條件下優於貪婪算法和遺傳算法。


    Quantum Approximation Optimization Algorithm (QAOA) [1] has been proposed to solve combinatorial problems, such as maximum cut problem, but it cannot be directly applied to problems with constraints. Previous research has used the penalty method or Quantum Alternating Operator Ansatz (QAOAnsatz) [2] to handle the constraints. In this work, Using the Minimum Vertex Cover (MVC) problem as an test case, we analyzed the differences between two methods of incorporating constraints into QAOA. Also, we followed the approach of Brayvi et al. [3], enhancing QAOAnsatz with a recursive method and using a classical simulator to test the algorithm’s performance. We found that using the recursive method significantly improves performance, outperforming the classical greedy algorithm. Finally, we transformed our quantum algorithm at depth-1 into a Recursive Classical Approximation Optimization Algorithm (RCAOA) and tested it on larger graphs. The results on larger graphs show that when the graph has many edges, RCAOA’s performance on random graphs is better than that of the greedy algorithm and genetic algorithm under our test conditions.

    Abstract (Chinese) I Acknowledgements (Chinese) II Abstract III Contents IV List of Figures VI List of Algorithms IX 1 Introduction 1 2 Preliminaries 6 2.1 Minimum Vertex Cover Problem . . . . . . . . . . . . . . . . . . . . 6 2.2 Quantum Approximate Optimization Algorithm . . . . . . . . . . . 9 2.3 QAOA with penalty . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Quantum Alternating Operator Ansatz . . . . . . . . . . . . . . . . 14 2.5 multi-angle QAOA . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6 Recursive QAOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Methods 20 3.1 Recursive QAOAnsatz . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Recursive CAOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Numerical results 28 4.1 penalty mathod and QAOAnsatz and classical algorithms . . . . . . 28 4.2 Strengthen QAOAnsatz . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 CAOA vs QAOAnsatz comparison . . . . . . . . . . . . . . . . . . . 35 4.4 RCAOA vs CAOA vs genetic in large graph . . . . . . . . . . . . . 36 5 Conclusion 38 Bibliography 40

    [1] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm, 2014.
    [2] Stuart Hadfield, ZhihuiWang, Bryan O'Gorman, Eleanor Rieffel, Davide Venturelli, and Rupak Biswas. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms, 12(2):34, feb 2019.
    [3] Sergey Bravyi, Alexander Kliesch, Robert Koenig, and Eugene Tang. Obstacles to variational quantum optimization from symmetry protection. Physical Review Letters, 125(26), dec 2020.
    [4] John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, aug 2018.
    [5] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, oct 1997.
    [6] Lov K. Grover. A fast quantum mechanical algorithm for database search, 1996.
    [7] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, SuguruEndo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, LukaszCincio, and Patrick J. Coles. Variational quantum algorithms. Nature ReviewsPhysics, 3(9):625–644, aug 2021.
    [8] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Al´an Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1), jul 2014.
    [9] Carlos Bravo-Prieto, Ryan LaRose, M. Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J. Coles. Variational quantum linear solver, 2020.
    [10] Hsin-Yuan Huang, Kishor Bharti, and Patrick Rebentrost. Near-term quantum algorithms for linear systems of equations, 2019.
    [11] Vasily V. Gusev. The vertex cover game: Application to transport networks. Omega, 97:102102, 2020.
    [12] Ayaan Hossain, Eriberto Lopez, Sean M. Halper, Daniel P. Cetnar, Alexander C. Reis, Devin Strickland, Eric Klavins, and Howard M. Salis. Automated design of thousands of nonrepetitive parts for engineering stable genetic systems. Nature Biotechnology, 38(12):1466–1475, Dec 2020.
    [13] Alexander C. Reis, Sean M. Halper, Grace E. Vezeau, Daniel P. Cetnar, Ayaan Hossain, Phillip R. Clauer, and Howard M. Salis. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgrna arrays. Nature Biotechnology, 37(11):1294–1301, Nov 2019.
    [14] Jaimie Stephens, Ciaran Ryan-Anderson, and Ojas Parekh. Quantum approximate optimization algorithm (qaoa) on constrained optimization problems. 2019.
    [15] Rebekah Herrman, Phillip C. Lotshaw, James Ostrowski, Travis S. Humble, and George Siopsis. Multi-angle quantum approximate optimization algorithm, 2021.
    [16] Edward Farhi, David Gamarnik, and Sam Gutmann. The quantum approximate optimization algorithm needs to see the whole graph: Worst case examples, 2020.
    [17] Edward Farhi, David Gamarnik, and Sam Gutmann. The quantum approximate optimization algorithm needs to see the whole graph: A typical case, 2020.
    [18] Eunok Bae and Soojoon Lee. Recursive qaoa outperforms the original qaoa for the max-cut problem on complete graphs, 2023.
    [19] Tanweer Alam, Shamimul Qamar, Amit Dixit, and Mohamed Benaida. Genetic algorithm: Reviews, implementations, and applications, 2020.
    [20] Isaac K. Evans. Evolutionary algorithms for vertex cover. In V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, editors, Evolutionary Programming VII, pages 377–386, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.
    [21] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2. Journal of Computer and System Sciences, 74(3):335–349, 2008. Computational Complexity 2003.
    [22] S. Marsh and J. B. Wang. A quantum walk-assisted approximate algorithm for bounded NP optimisation problems. Quantum Information Processing, 18(3), jan 2019.
    [23] Kaiyan Shi, Rebekah Herrman, Ruslan Shaydulin, Shouvanik Chakrabarti, Marco Pistoia, and Jeffrey Larson. Multiangle QAOA does not always need all its angles. In 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC). IEEE, dec 2022.
    [24] Qiskit contributors. Qiskit: An open-source framework for quantum computing, 2023.
    [25] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.

    QR CODE