簡易檢索 / 詳目顯示

研究生: 黃向苓
Hsiang-Ling Huang
論文名稱: 建立中草藥對免疫調控及抑制腫瘤活性的動物模型
Establishment of an animal model for the study of immune modulation and anti-tumor activity of Chinese herbal medicine
指導教授: 江啟勳
Chi-Shiun Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 99
中文關鍵詞: 冬蟲夏草茯苓裂褶菌免疫調控腫瘤
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中國人長久歷史的經驗累積中有所謂的「醫食同源」,這句話具體表達了中國傳統的醫學基本觀念,因此,除了西醫療法外,人們常常會嘗試以中草藥進補,以期能增加身體的抵抗力及達到改變身體機能之功效。本論文中,我們在C57BL/6J小鼠皮下植入攝護腺腫瘤細胞株TRAMP-C1來模擬癌症的產生,再仿效傳統中草藥經由口服的投藥方式,以餵食管餵食小鼠冬蟲夏草、茯苓及裂褶菌水萃液,觀察餵食中草藥對小鼠體內腫瘤生長的影響。此外,我們並以三種中草藥水萃液餵食正常小鼠,再去探討冬蟲夏草、茯苓、裂褶菌是否可以影響正常小鼠的免疫系統。實驗發現,茯苓及裂褶菌水萃液在體外實驗可以直接抑制TRAMP-C1細胞株的生長,而餵食帶有TRAMP-C1腫瘤小鼠冬蟲夏草、茯苓及裂褶菌水萃液能夠有效的延緩腫瘤的生長速率;並且能夠活化部份的免疫機能,刺激脾臟細胞的活性,使IFN-γ的分泌量增加,進而去活化免疫系統。因此,冬蟲夏草、茯苓及裂褶菌水萃液可以抑制初生腫瘤的生長,並可調節正常小鼠的免疫系統。


    Medicinal fungi of traditional Chinese medicine have been widely used as tonic food and herbal medicine since ancient times in China. This research aimed to establish an animal system to evaluate the immunomodulation and anti-tumor activity of Chinese herbal medicine. In the literature, we were intrigued in whether Cordyceps sinensis, Poria cocos, and Schizophyllum commune could enhance the immunity and be an effective anti-tumor agent. The prostate cancer cell line, TRAMP-C1, was injected into C57BL/6J mice subcutaneously, and the water extracts of herbal medicine mentioned above were then orally administered to testify for the anti-tumor effect. Regarding the potential influences on immune function in mice, normal mice were fed with the water extracts of herbal medicine to evaluate certain targets of immunity. The results demonstrated that tumor-bearing mice treated with the water extracts of herbal medicine had a significant effect on tumor-growth delay. The mice orally administered the water extracts, in addition, activated partial immune functions, including IFN-γ, which might be an effective activator of macrophages, secreted by spleenocytes. The above suggested Cordyceps sinensis, Poria cocos, and Schizophyllum commune were efficient agents against tumor progression and served as potential immunomodulators.

    ABSTRACT I 摘要 III 誌謝 IV 目錄 V 第一章 序論 1 1.1 攝護腺癌 1 1.1.1 癌症及療法簡介 1 1.1.2 攝護腺癌 3 1.2 冬蟲夏草(CORDYCEPS SINENSIS, CS) 5 1.2.1 冬蟲夏草之簡介 5 1.2.2 冬蟲夏草主要化學成份 7 1.2.3 冬蟲夏草的藥理療效 7 1.3 茯苓(PORIA COCOS, P. COCOS) 9 1.3.1 茯苓之簡介 9 1.3.2 茯苓的療效 10 1.4 裂褶菌(SCHIZOPHYLLUM COMMUNE) 12 1.4.1 裂褶菌之簡介 12 1.4.2 裂褶菌的研究 12 1.5 研究動機與目的 14 第二章 材料與方法 15 2.1 細胞實驗 15 2.1.1 細胞培養 15 2.1.2 細胞存活率之測試(MTT assay) 16 2.2 動物實驗 17 2.2.1 動物來源 17 2.2.2 動物分組及日程 18 2.2.3 植入TRAMP-C1細胞株 19 2.2.4 注射紫衫醇 19 2.2.5 餵食中草藥 20 2.2.6 小鼠腹腔巨噬細胞(peritoneal macrophage)的抽取 20 2.2.7 小鼠脾臟細胞(spleenocyte)的取得 21 2.3 中草藥的來源與製備 22 2.3.1 冬蟲夏草的來源 22 2.3.2 冬蟲夏草的萃取 22 2.3.3 茯苓及裂褶菌的來源 23 2.3.4 茯苓及裂褶菌的萃取 23 2.4 免疫機能檢測 24 2.4.1 腫瘤壞死因子(tumor necrosis factor-α, TNF-α)之測定 24 2.4.2 一氧化氮濃度分析(Nitrite Assay) 24 2.4.3 吞噬活性測試 25 2.4.4 酵素連結免疫吸附法(Enzyme-linked Immuno-sorption Assay)26 2.4.5 調節性T細胞比例 (regulatory T cell, Treg) 28 2.5 統計方法 29 第三章 實驗結果 30 3.1 直接毒殺腫瘤細胞株的能力 30 3.2 腫瘤生長曲線 30 3.3 活化腹腔巨噬細胞免疫調節試驗 31 3.3.1 在體外刺激對腹腔巨噬細胞產生TNF-α及NO的影響 32 3.3.2 餵食小鼠水萃液對腹腔巨噬細胞產生TNF-α及NO的改變 33 3.3.3 腹腔巨噬細胞吞噬能力的判別 34 3.4 胰臟細胞免疫反應之調節作用 35 3.4.1 對 Th1 型及 Th2 型細胞激素誘導性免疫反應 (adaptive immunity) 之調節作用 35 3.4.2 冬蟲夏草水萃液對調節性T細胞(regulatory T cell, Treg)的影響 36 3.5 細胞吞噬QUANTUM DOTS(QDS)的能力 38 第四章 討論 44 I. 44 II. 53 圖表說明 57 圖表 71 參考文獻 87

    1. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3, 991-8 (2002).
    2. Dunn, G. P., Old, L. J. & Schreiber, R. D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137-48 (2004).
    3. Hursting, S. D., Cantwell, M. M., Sansbury, L. B. & Forman, M. R. Nutrition and cancer prevention: targets, strategies, and the importance of early life interventions. Nestle Nutr Workshop Ser Pediatr Program, 153-202 (2006).
    4. Harris, R. E., Beebe-Donk, J., Doss, H. & Burr Doss, D. Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade (review). Oncol Rep 13, 559-83 (2005).
    5. Csoka, K., Liliemark, J., Larsson, R. & Nygren, P. Evaluation of the cytotoxic activity of gemcitabine in primary cultures of tumor cells from patients with hematologic or solid tumors. Semin Oncol 22, 47-53 (1995).
    6. Khauli, R. B. Prostate cancer: diagnostic and therapeutic strategies with emphasis on the role of PSA. J Med Liban 53, 95-102 (2005).
    7. Gingrich, J. R. et al. Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res 57, 4687-91 (1997).
    8. Ng, T. B. & Wang, H. X. Pharmacological actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol 57, 1509-19 (2005).
    9. Zhu, J. S., Halpern, G. M. & Jones, K. The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis: part II. J Altern Complement Med 4, 429-57 (1998).
    10. Xu, R. H., Peng, X. E., Chen, G. Z. & Chen, G. L. Effects of cordyceps sinensis on natural killer activity and colony formation of B16 melanoma. Chin Med J (Engl) 105, 97-101 (1992).
    11. Chen, Y. J., Shiao, M. S., Lee, S. S. & Wang, S. Y. Effect of Cordyceps sinensis on the proliferation and differentiation of human leukemic U937 cells. Life Sci 60, 2349-59 (1997).
    12. Bok, J. W., Lermer, L., Chilton, J., Klingeman, H. G. & Towers, G. H. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51, 891-8 (1999).
    13. Nakamura, K. et al. Inhibitory effect of Cordyceps sinensis on spontaneous liver metastasis of Lewis lung carcinoma and B16 melanoma cells in syngeneic mice. Jpn J Pharmacol 79, 335-41 (1999).
    14. Chen, G. Z., Chen, G. L., Sun, T., Hsieh, G. C. & Henshall, J. M. Effects of Cordyceps sinensis on murine T lymphocyte subsets. Chin Med J (Engl) 104, 4-8 (1991).
    15. Gao, Q., Wu, G. & He, D. [Effect of Cordyceps sinensis on the Th1/Th2 cytokines in patients with Condyloma Acuminatum]. Zhong Yao Cai 23, 402-4 (2000).
    16. Shin, K. H. et al. Anti-tumour and immuno-stimulating activities of the fruiting bodies of Paecilomyces japonica, a new type of Cordyceps spp. Phytother Res 17, 830-3 (2003).
    17. Yamaguchi, Y., Kagota, S., Nakamura, K., Shinozuka, K. & Kunitomo, M. Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis. Phytother Res 14, 647-9 (2000).
    18. Chen, Y. Y. & Chang, H. M. Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling (Poria cocos) on human leukemic U937 and HL-60 cells. Food Chem Toxicol 42, 759-69 (2004).
    19. Lee, K. Y. et al. Polysaccharide isolated from Poria cocos sclerotium induces NF-kappaB/Rel activation and iNOS expression through the activation of p38 kinase in murine macrophages. Int Immunopharmacol 4, 1029-38 (2004).
    20. Tseng, J. & Chang, J. G. Suppression of tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 and granulocyte-monocyte colony stimulating factor secretion from human monocytes by an extract of Poria cocos. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 25, 1-11 (1992).
    21. Yu, S. J. & Tseng, J. Fu-Ling, a Chinese herbal drug, modulates cytokine secretion by human peripheral blood monocytes. Int J Immunopharmacol 18, 37-44 (1996).
    22. Gapter, L., Wang, Z., Glinski, J. & Ng, K. Y. Induction of apoptosis in prostate cancer cells by pachymic acid from Poria cocos. Biochem Biophys Res Commun 332, 1153-61 (2005).
    23. Chawla-Sarkar, M. et al. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8, 237-49 (2003).
    24. Ooi, V. E. & Liu, F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 7, 715-29 (2000).
    25. Fujimoto, S. et al. Clinical evaluation of schizophyllan adjuvant immunochemotherapy for patients with resectable gastric cancer--a randomized controlled trial. Jpn J Surg 14, 286-92 (1984).
    26. Hasegawa, K. et al. [Electron microscopic and immunological studies concerning the effect on the antitumor activity of sizofiran (SPG) combined with radiotherapy for cervical cancer]. Nippon Gan Chiryo Gakkai Shi 25, 2549-61 (1990).
    27. Borchers, A. T., Stern, J. S., Hackman, R. M., Keen, C. L. & Gershwin, M. E. Mushrooms, tumors, and immunity. Proc Soc Exp Biol Med 221, 281-93 (1999).
    28. Borchers, A. T., Keen, C. L. & Gershwin, M. E. Mushrooms, tumors, and immunity: an update. Exp Biol Med (Maywood) 229, 393-406 (2004).
    29. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182, 18-32 (2001).
    30. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163, 5211-8 (1999).
    31. Boes, M. & Ploegh, H. L. Translating cell biology in vitro to immunity in vivo. Nature 430, 264-71 (2004).
    32. Zhang, W., Yang, J., Chen, J., Hou, Y. & Han, X. Immunomodulatory and antitumour effects of an exopolysaccharide fraction from cultivated Cordyceps sinensis (Chinese caterpillar fungus) on tumour-bearing mice. Biotechnol Appl Biochem 42, 9-15 (2005).
    33. Gordon, S. Alternative activation of macrophages. Nat Rev Immunol 3, 23-35 (2003).
    34. Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5, 641-54 (2005).
    35. Bonjardim, C. A. Interferons (IFNs) are key cytokines in both innate and adaptive antiviral immune responses--and viruses counteract IFN action. Microbes Infect 7, 569-78 (2005).
    36. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164, 6166-73 (2000).
    37. Maggi, E. et al. Thymic regulatory T cells. Autoimmun Rev 4, 579-86 (2005).
    38. Chattopadhyay, S., Chakraborty, N. G. & Mukherji, B. Regulatory T cells and tumor immunity. Cancer Immunol Immunother 54, 1153-61 (2005).
    39. Jonuleit, H. & Schmitt, E. The regulatory T cell family: distinct subsets and their interrelations. J Immunol 171, 6323-7 (2003).
    40. Pinaud, F. et al. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27, 1679-87 (2006).
    41. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4, 435-46 (2005).
    42. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538-44 (2005).
    43. Chan, W. C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016-8 (1998).
    44. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759-62 (2002).
    45. Golzio, M., Teissie, J. & Rols, M. P. Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci U S A 99, 1292-7 (2002).
    46. Jaiswal, J. K., Mattoussi, H., Mauro, J. M. & Simon, S. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21, 47-51 (2003).
    47. Lovric, J. et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83, 377-85 (2005).
    48. Hsieh, S. C. et al. The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels. Biomaterials 27, 1656-64 (2006).
    49. Voura, E. B., Jaiswal, J. K., Mattoussi, H. & Simon, S. M. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10, 993-8 (2004).
    50. Stroh, M. et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11, 678-82 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE