研究生: |
吳俊毅 Wu,Jun-Yi |
---|---|
論文名稱: |
超快光游離誘發酚-醯胺錯合物陽離子內之質子轉移動態學研究 Ultrafast Photoionization Induced Proton Transfer Dynamic in Phenol-Amide Cation Complex |
指導教授: |
鄭博元
Cheng,Po-Yuan |
口試委員: |
周佳駿
李英裕 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 飛秒 、質子轉移 、超快 、陽離子 、動態學 |
外文關鍵詞: | ultrafast, Proton transfer, Femtosecond, Cation, Dynamic |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中我們以飛秒雷射激發-探測光游離光裂解實驗技術(Femtosecond Pump-probe Photoionization-Photofragmentation technique)結合質譜偵測技術,研究[phenol-N-methylformamide]+ 及[phenol-N,N-dimethylformamide ]+([PhOH-NMF]+及[PhOH-DMF]+)陽離子錯合物的質子轉移過程及錯合物異構反應的相關動力學。我們在分子束中分別製備PhOH-NMF及PhOH-DMF中性錯合物,以resonance-enhanced multiphoton ionization (REMPI)技術(1+1, λ_pump=261.3~272 nm)經由S1態游離化PhOH-NMF及PhOH-DMF錯合物,再將探測脈衝延遲入射(λ_probe=392~408 nm)得到[PhOH-NMF]+及[PhOH-DMF]+離子碎裂強度隨時間變化的瞬時訊號。這兩者的瞬時訊號在不同波長下隨時間變化的趨勢與前人研究的[PhOH-NH3]+類似,證實[PhOH-NMF]+及[PhOH-DMF]+系統有質子轉移現象發生,但是質子轉移的速率較[PhOH-NH3]+的系統慢了許多,顯示在本系統中質子轉移途徑上有能量障礙。理論計算結果亦顯示PhOH-cisNMF陽離子態質子轉移途徑上存在著小能障與實驗結果吻合,而PhOH與amide形成氫鍵錯合物時存在兩種異構物,我們進行RRKM計算結果顯示異構化反應的時間尺度約在幾十皮秒。[PhOH-NMF]+以多指數模型適解得到三個生命期,分別為τ_1≈0.23 ps 指認為PhOH-NMF由雷射游離至[PhOH-NMF]+FC所引發的初始波包運動,τ_2=3 ps~18 ps為質子轉移過程,τ_3=40ps~81 ps維錯合物進行異構化。[PhOH-DMF]+以連續模型適解得到三個生命期,分別為τ_1≈0.3 ps為初始波包運動,τ_1≈2 ps為振動能緩解,τ_3=15ps~17 ps維錯合物進行異構化。
We report studies of ultrafast proton transfer (PT) reaction of phenol-N-methylformamide(PhOH-NMF) and phenol-N,N-dimethylformamide (PhOH-DMF) cation complexes by using femtosecond pump-probe photoionization-photofragmentation spectroscopy (fs-PIPF). Neutral PhOH-NMF and PhOH-DMF complexes prepared in a free jet are photoionized by femtosecond [1+1] resonance-enhanced multiphoton ionization via S1 state, and the subsequent dynamics occurring in the cations is probed by delayed pulses that result in ion fragmentation. The observed probe-wavelength dependence of the transients are consistent with a spectral evolution from the initial non-PT to final PT states. The combination of experimental results and DFT calculations suggest that a low barrier is present along [PhOH-NMF]+ cation proton transfer reaction coordinate. There are three distinct time scales in [PhOH-NMF]+ experiments : τ_1≈0.23 ps is assigned to an initial wave-packet motion, τ_2=3 ps~18 ps is assigned to the proton transfer, and τ_3=40ps~81 ps is attributed to to complex isomerization. The experiments revealed that PT in [PhOH-DMF]+ cation also proceeds in three distinct steps: τ_1≈0.3 ps an initial wave-packet motion, followed by a slower relaxation τ_2≈2 ps and a final step τ_3=15ps~17 ps of complex isomerization.
1. 蘇建華, 中華技術學院學報 28, 12 (2003)
2. M.S., J.D.J., The Manganese-calcium oxide cluster of Photosystem II and its assimilation by the Cyanobacteria. 2006.
3. Weber, K., Z. Phys. Chem. Abt. B 15, 18 (1931)
4. Weller, A., Z, Z. Elktrochem. Berichte der Bunsengesellschaft für physikalische Chemie 56, 662 (1952)
5. Smith, K.K., K.J. Kaufmann, D. Huppert, and M. Gutman, Chem. Phys. Lett. 64, 522 (1979)
6. Kosower, E.M. and D. Huppert, Annu. Rev. Phys. Chem. 37, 127 (1986)
7. Webb, S.P., L.A. Philips, S.W. Yeh, L.M. Tolbert, and J.H. Clark, J. Phys. Chem. 90, 5154 (1986)
8. Brauman, J.I. and L.K. Blair, JACS 90, 6561 (1968)
9. Cooks, R. G.; Kruger, T. L. J. Am. Chem. Soc. 1977, 99, 1279.
10. Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Mass
Spectrom. Rev. 1994, 13, 287–339.
11. 鍾文梅, 麥.江.楊., 科儀新知 69 (2007)
12. Mikami, N., A. Okabe, and I. Suzuki, J. Phys. Chem. 92, 1858 (1988)
13. Steadman, J. and J.A. Syage, JACS 113, 6786 (1991)
14. Syage, J.A., ZEITSCHRIFT FÜR PHYSIK. D, ATOMS, MOLECULES, & CLUSTERS 30, 1 (1994)
15. Syage, J.A., Chem. Phys. Lett. 202, 227 (1993)
16. Syage, J.A., Faraday Discuss. 97, 401 (1994)
17. Syage, J.A. and J. Steadman, J. Chem. Phys 95, 2497 (1991)
18. Syage, J.A., J. Phys. Chem. 99, 5772 (1995)
19. Steadman, J. and J.A. Syage, J. Chem. Phys 92, 4630 (1990)
20. Syage, J.A. and J. Steadman, J. Phys. Chem. 96, 9606 (1992)
21. Hineman, M.F., D.F. Kelley, and E.R. Bernstein, J. Chem. Phys 99, 4533 (1993)
22. Knockenmuss, R.; Cheshnovsky, O.;Leutwyler, S. Chem. Phys. Lett. 1988, 144, 317.
23. Zwier, T. S. Ann. Rev. Phys. Chem. 1996, 47, 205.
24. Ebata, T.; Fujii, A.;Mikami, N. Int.Rev.Phys.Chem. 1998, 17, 331.
25. Zwier, T. S. Adv. Mol. vibr. Collision Dynam. 1998, 92, 3313.
26 Mikami, N., T. Sasaki, and S. Sato, Chem. Phys. Lett. 180, 431 (1991)
27. Mikami, N., S. Sato, and M. Ishigaki, Chem. Phys. Lett. 202, 431 (1993)
28. Tripathi, G.N.R. and R.H. Schuler, J. Chem. Phys 81, 113 (1984)
29. Sato, S., T. Ebata, and N. Mikami, Spectrochim. Acta, Pt. A: Mol. Spectrosc. 50, 1413 (1994)
30. Yi, M. and S. Scheiner, Chem. Phys. Lett. 262, 567 (1996)
31. Sodupe, M., A. Oliva, and J. Bertrán, J. Phys. Chem. A 101, 9142 (1997)
32. Sobolewski, A.L. and W. Domcke, J. Phys. Chem. A 105, 9275 (2001)
33. Radziszewski, J.G., M. Gil, A. Gorski, J. Spanget-Larsen, J. Waluk, and B.a.J. Mróz, J. Chem. Phys 115, 9733 (2001)
34. Ching-Chi Shen, and Po-Yuan Cheng, J. Chem. Phys., 2014, 141, 171103
35. Mikami, N., S. Sato, and M. Ishigaki, Chem. Phys. Lett. 202, 431 (1993)
36. Sato, S. and N. Mikami, J. Phys. Chem. 100, 4765 (1996)
37. Sawamura, T., A. Fujii, S. Sato, T. Ebata, and N. Mikami, J. Phys. Chem. 100, 8131 (1996)
38. Kleinermanns, K., C. Janzen, D. Spangenberg, and M. Gerhards, J. Phys. Chem. A 103, 5232 (1999)
39. LeClaire, J.E., R. Anand, and P.M. Johnson, J. Chem. Phys 106, 6785 (1997)
40. Hunter, E.P.L. and S.G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998)
41. DeFrees, D.J., R.T. McIver, and W.J. Hehre, JACS 102, 3334 (1980)
42. Hoke, S.H., S.S. Yang, R.G. Cooks, D.A. Hrovat, and W.T. Borden, JACS 116, 4888 (1994)
43. Kebarle, P., S.K. Searles, A. Zolla, J. Scarborough, and M. Arshadi, JACS 89, 6393 (1967)
44. Binju Wang and Zexing Cao, J. Phys. Chem. A 2010, 114, 12918–12927
45. Tortajada, J.; Leon, E.; Morizur, J. P.; Luna, A.; Mo, O.; Yanez,M.J. Phys. Chem.1995, 99, 13890−13898.
46. Huyen Thi Nguyen, Vinh Son Nguyen, Nguyen Tien Trung, Remco W. A. Havenith, and Minh Tho Nguyen, J. Phys. Chem. A 2013, 117, 7904−7917
47. C. Chaudhuri, J. C. Jiang, C.-C. Wu, X. Wang, and H.-C. Chang, J. Phys. Chem. A 2001, 105, 8906-8915
48. C.-C. Wu, J. C. Jiang, I. Hahndorf, C. Chaudhuri, Y. T. Lee, and H.-C. Chang, J. Phys. Chem. A 2000, 104, 9556-9565
49. Hunter, E.P.; Lias, S.G., J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656.
50. 周威銧, 胞嘧啶之氣相超快激發態動態學研究:激發態衰減時間與激發能量的依存性, in 化學系. 2008, 國立清華大學: 新竹市. p. 106.
51. 陳依微, 酚-氨陽離子錯合物中之超快質子轉移反應動態學研究, in 化學系. 2011, 國立清華大學: 新竹市. p. 91.
52. 何智偉, 氣相飛秒化學反應動態學研究1.二甲基亞碸之超快三體光解反應動態學2.偶氮苯陽離子在異構化途徑之同調振動, in 化學系. 2008, 國立清華大學: 新竹市. p. 226.
53. Eldredge, B.A.A.P., General Chemistry: Principles, Patterns, and Applications, v. 1.0 (2 Volume Set).
54. Smalley, R.E., L. Wharton, and D.H. Levy, Acc. Chem. Res. 10, 139 (1977)
55. Wiley, W.C. and I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955)
56. Armentano, A., M. Riese, M. Taherkhani, M. Ben Yezzar, K. Muller-Dethlefs, M. Fujii, and O. Dopfer, J. Phys. Chem. A 114, 11139 (2010)
57. J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, 128, 084106
58. Y.K. Kang, H.S. Park, Journal of Molecular Structure (Theochem) 676 (2004) 171–176
59. M. Albrecht, C. A. Rice and M. A. Suhm, J. Phys. Chem. A, 2008, 112, 7530–7542
60. S. Shin, A. Kurawaki, Y. Hamada, K. Shinya, K. Ohno, A. Tohara and M. Sato, J. Mol. Struct., 2006, 791, 30–40.
61. S. Ataka, H. Takeuchi and M. Tasumi, J. Mol. Struct., 1984, 113, 147–160.
62. H. E. Hallam and C. M. Jones, Trans. Faraday Soc., 1969, 65, 2607–2610.
63. M. Kitano and K. Kuchitsu, Bull. Chem. Soc. Jpn., 1974, 47, 631–634.
64. T. Miyazawa, J. Mol. Spectrosc., 1960, 4, 155–167.
65. Anastassios N. Troganis, Emilia Sicilia, Klimentini Barbarossou,Ioannis P. Gerothanassis, and Nino Russo, J. Phys. Chem. A, Vol. 109, No. 51, 2005 11879
66. M. Saldyka, Z. Mielke, K. Mierzwicki, S. Coussanb and P. Roubinb, Phys. Chem. Chem. Phys., 2011, 13, 13992–14002
67. A. Radzicka, L. Pedersen, R. Wolfenden, Biochemistry 27 (1988)4538.
68. M. Malathi, R. Sabesan and S. Krishnan, CURRENT SCIENCE, VOL. 86, NO. 6, 25 MARCH 2004
69. Walther Caminati, z Juan Carlos Lo´ pez, Susana Blanco, Santiago Mata andJose` Luis Alonso, Phys. Chem. Chem. Phys., 2010, 12, 10230–10234
70. T. Bare, and W.L. Hase, "Unimolecular Reaction Dynamics: Theory and Experiment, " New York :Oxford University Press, 1996.