簡易檢索 / 詳目顯示

研究生: 吳俊毅
Wu,Jun-Yi
論文名稱: 超快光游離誘發酚-醯胺錯合物陽離子內之質子轉移動態學研究
Ultrafast Photoionization Induced Proton Transfer Dynamic in Phenol-Amide Cation Complex
指導教授: 鄭博元
Cheng,Po-Yuan
口試委員: 周佳駿
李英裕
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 116
中文關鍵詞: 飛秒質子轉移超快陽離子動態學
外文關鍵詞: ultrafast, Proton transfer, Femtosecond, Cation, Dynamic
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文中我們以飛秒雷射激發-探測光游離光裂解實驗技術(Femtosecond Pump-probe Photoionization-Photofragmentation technique)結合質譜偵測技術,研究[phenol-N-methylformamide]+ 及[phenol-N,N-dimethylformamide ]+([PhOH-NMF]+及[PhOH-DMF]+)陽離子錯合物的質子轉移過程及錯合物異構反應的相關動力學。我們在分子束中分別製備PhOH-NMF及PhOH-DMF中性錯合物,以resonance-enhanced multiphoton ionization (REMPI)技術(1+1, λ_pump=261.3~272 nm)經由S1態游離化PhOH-NMF及PhOH-DMF錯合物,再將探測脈衝延遲入射(λ_probe=392~408 nm)得到[PhOH-NMF]+及[PhOH-DMF]+離子碎裂強度隨時間變化的瞬時訊號。這兩者的瞬時訊號在不同波長下隨時間變化的趨勢與前人研究的[PhOH-NH3]+類似,證實[PhOH-NMF]+及[PhOH-DMF]+系統有質子轉移現象發生,但是質子轉移的速率較[PhOH-NH3]+的系統慢了許多,顯示在本系統中質子轉移途徑上有能量障礙。理論計算結果亦顯示PhOH-cisNMF陽離子態質子轉移途徑上存在著小能障與實驗結果吻合,而PhOH與amide形成氫鍵錯合物時存在兩種異構物,我們進行RRKM計算結果顯示異構化反應的時間尺度約在幾十皮秒。[PhOH-NMF]+以多指數模型適解得到三個生命期,分別為τ_1≈0.23 ps 指認為PhOH-NMF由雷射游離至[PhOH-NMF]+FC所引發的初始波包運動,τ_2=3 ps~18 ps為質子轉移過程,τ_3=40ps~81 ps維錯合物進行異構化。[PhOH-DMF]+以連續模型適解得到三個生命期,分別為τ_1≈0.3 ps為初始波包運動,τ_1≈2 ps為振動能緩解,τ_3=15ps~17 ps維錯合物進行異構化。


      We report studies of ultrafast proton transfer (PT) reaction of phenol-N-methylformamide(PhOH-NMF) and phenol-N,N-dimethylformamide (PhOH-DMF) cation complexes by using femtosecond pump-probe photoionization-photofragmentation spectroscopy (fs-PIPF). Neutral PhOH-NMF and PhOH-DMF complexes prepared in a free jet are photoionized by femtosecond [1+1] resonance-enhanced multiphoton ionization via S1 state, and the subsequent dynamics occurring in the cations is probed by delayed pulses that result in ion fragmentation. The observed probe-wavelength dependence of the transients are consistent with a spectral evolution from the initial non-PT to final PT states. The combination of experimental results and DFT calculations suggest that a low barrier is present along [PhOH-NMF]+ cation proton transfer reaction coordinate. There are three distinct time scales in [PhOH-NMF]+ experiments : τ_1≈0.23 ps is assigned to an initial wave-packet motion, τ_2=3 ps~18 ps is assigned to the proton transfer, and τ_3=40ps~81 ps is attributed to to complex isomerization. The experiments revealed that PT in [PhOH-DMF]+ cation also proceeds in three distinct steps: τ_1≈0.3 ps an initial wave-packet motion, followed by a slower relaxation τ_2≈2 ps and a final step τ_3=15ps~17 ps of complex isomerization.

    摘要 I Abstract II 第一章 緒論 1 1.1引言 1 1.2 文獻回顧 2 1.3 質子化醯胺 8 第二章 實驗系統與技術 12 2.1激發-探測共振增強多光子游離技術 12 2.2超快飛秒雷射系統 15 2.2.1雷射產生源: 16 2.2.2能量再生放大器 21 2.3波長調變器 27 2.3.1 倍頻與混頻技術 27 2.4分子束系統 29 2.4.1分子束樣品進氣裝置 33 2.5飛行時間質譜儀 36 2.6實驗架設圖 40 2.7訊號擷取系統 41 2.8儀器響應函數(Instrument response function, IRF) 43 第三章 實驗結果與分析 47 3.1 [phenol-NMF]+激發-探測光游離-光裂解實驗 47 3.1.1 [phenol-NMF]+質譜圖 47 3.1.2 [phenol-DMF]+質譜圖 50 3.1.3 離子損號瞬時訊號的非均向性 52 3.1.4 雷射能量依存性 56 3.1.4 雷射波長依存性 60 3.2離子損耗瞬時訊號外觀與初步分析 64 3.2.1 [PhOH-NMF]+的損耗瞬時訊號 64 3.2.2 [PhOH-DMF]+的損耗瞬時訊號 66 3.2.3 [PhOH-H2O]+的損耗瞬時訊號與數據分析 68 第四章 討論 71 4.1 密度泛函計算方法 71 4.1.1 N-甲基甲醯胺的互變異構物 71 4.1.2醯胺-苯酚的氫鍵錯合物 74 4.1.3苯酚-N甲基甲醯胺錯合物陽離子態結構 79 4.1.4苯酚-N,N-二甲基甲醯胺錯合物陽離子態結構 83 4.1.5 PhOH-cisNMF錯合物陽離子質子轉移過渡態 85 4.1.6 苯酚-醯胺錯合物陽離子異構化過渡態 88 4.1.7 質子化醯胺互變異構物 92 4.2 綜合討論 94 4.2.1 苯酚-N-甲基甲醯胺中性錯合物異構物比例 94 4.2.2 苯酚-N-甲基甲醯胺錯合物陽離子 95 4.2.3 苯酚-N,N-二甲基甲醯胺錯合物陽離子 101 4.3 動力學模型適解離子損耗瞬時訊號與數據分析 105 4.3.1 [PhOH-NMF]+的損耗瞬時訊號適解 105 4.3.2 [PhOH-DMF]+的損耗瞬時訊號適解 107 第五章 結論 111 參考文獻 114

    1. 蘇建華, 中華技術學院學報 28, 12 (2003)
    2. M.S., J.D.J., The Manganese-calcium oxide cluster of Photosystem II and its assimilation by the Cyanobacteria. 2006.
    3. Weber, K., Z. Phys. Chem. Abt. B 15, 18 (1931)
    4. Weller, A., Z, Z. Elktrochem. Berichte der Bunsengesellschaft für physikalische Chemie 56, 662 (1952)
    5. Smith, K.K., K.J. Kaufmann, D. Huppert, and M. Gutman, Chem. Phys. Lett. 64, 522 (1979)
    6. Kosower, E.M. and D. Huppert, Annu. Rev. Phys. Chem. 37, 127 (1986)
    7. Webb, S.P., L.A. Philips, S.W. Yeh, L.M. Tolbert, and J.H. Clark, J. Phys. Chem. 90, 5154 (1986)
    8. Brauman, J.I. and L.K. Blair, JACS 90, 6561 (1968)
    9. Cooks, R. G.; Kruger, T. L. J. Am. Chem. Soc. 1977, 99, 1279.
    10. Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Mass
    Spectrom. Rev. 1994, 13, 287–339.
    11. 鍾文梅, 麥.江.楊., 科儀新知 69 (2007)
    12. Mikami, N., A. Okabe, and I. Suzuki, J. Phys. Chem. 92, 1858 (1988)
    13. Steadman, J. and J.A. Syage, JACS 113, 6786 (1991)
    14. Syage, J.A., ZEITSCHRIFT FÜR PHYSIK. D, ATOMS, MOLECULES, & CLUSTERS 30, 1 (1994)
    15. Syage, J.A., Chem. Phys. Lett. 202, 227 (1993)
    16. Syage, J.A., Faraday Discuss. 97, 401 (1994)
    17. Syage, J.A. and J. Steadman, J. Chem. Phys 95, 2497 (1991)
    18. Syage, J.A., J. Phys. Chem. 99, 5772 (1995)
    19. Steadman, J. and J.A. Syage, J. Chem. Phys 92, 4630 (1990)
    20. Syage, J.A. and J. Steadman, J. Phys. Chem. 96, 9606 (1992)
    21. Hineman, M.F., D.F. Kelley, and E.R. Bernstein, J. Chem. Phys 99, 4533 (1993)
    22. Knockenmuss, R.; Cheshnovsky, O.;Leutwyler, S. Chem. Phys. Lett. 1988, 144, 317.
    23. Zwier, T. S. Ann. Rev. Phys. Chem. 1996, 47, 205.
    24. Ebata, T.; Fujii, A.;Mikami, N. Int.Rev.Phys.Chem. 1998, 17, 331.
    25. Zwier, T. S. Adv. Mol. vibr. Collision Dynam. 1998, 92, 3313.
    26 Mikami, N., T. Sasaki, and S. Sato, Chem. Phys. Lett. 180, 431 (1991)
    27. Mikami, N., S. Sato, and M. Ishigaki, Chem. Phys. Lett. 202, 431 (1993)
    28. Tripathi, G.N.R. and R.H. Schuler, J. Chem. Phys 81, 113 (1984)
    29. Sato, S., T. Ebata, and N. Mikami, Spectrochim. Acta, Pt. A: Mol. Spectrosc. 50, 1413 (1994)
    30. Yi, M. and S. Scheiner, Chem. Phys. Lett. 262, 567 (1996)
    31. Sodupe, M., A. Oliva, and J. Bertrán, J. Phys. Chem. A 101, 9142 (1997)
    32. Sobolewski, A.L. and W. Domcke, J. Phys. Chem. A 105, 9275 (2001)
    33. Radziszewski, J.G., M. Gil, A. Gorski, J. Spanget-Larsen, J. Waluk, and B.a.J. Mróz, J. Chem. Phys 115, 9733 (2001)
    34. Ching-Chi Shen, and Po-Yuan Cheng, J. Chem. Phys., 2014, 141, 171103
    35. Mikami, N., S. Sato, and M. Ishigaki, Chem. Phys. Lett. 202, 431 (1993)
    36. Sato, S. and N. Mikami, J. Phys. Chem. 100, 4765 (1996)
    37. Sawamura, T., A. Fujii, S. Sato, T. Ebata, and N. Mikami, J. Phys. Chem. 100, 8131 (1996)
    38. Kleinermanns, K., C. Janzen, D. Spangenberg, and M. Gerhards, J. Phys. Chem. A 103, 5232 (1999)
    39. LeClaire, J.E., R. Anand, and P.M. Johnson, J. Chem. Phys 106, 6785 (1997)
    40. Hunter, E.P.L. and S.G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998)
    41. DeFrees, D.J., R.T. McIver, and W.J. Hehre, JACS 102, 3334 (1980)
    42. Hoke, S.H., S.S. Yang, R.G. Cooks, D.A. Hrovat, and W.T. Borden, JACS 116, 4888 (1994)
    43. Kebarle, P., S.K. Searles, A. Zolla, J. Scarborough, and M. Arshadi, JACS 89, 6393 (1967)
    44. Binju Wang and Zexing Cao, J. Phys. Chem. A 2010, 114, 12918–12927
    45. Tortajada, J.; Leon, E.; Morizur, J. P.; Luna, A.; Mo, O.; Yanez,M.J. Phys. Chem.1995, 99, 13890−13898.
    46. Huyen Thi Nguyen, Vinh Son Nguyen, Nguyen Tien Trung, Remco W. A. Havenith, and Minh Tho Nguyen, J. Phys. Chem. A 2013, 117, 7904−7917
    47. C. Chaudhuri, J. C. Jiang, C.-C. Wu, X. Wang, and H.-C. Chang, J. Phys. Chem. A 2001, 105, 8906-8915
    48. C.-C. Wu, J. C. Jiang, I. Hahndorf, C. Chaudhuri, Y. T. Lee, and H.-C. Chang, J. Phys. Chem. A 2000, 104, 9556-9565
    49. Hunter, E.P.; Lias, S.G., J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656.
    50. 周威銧, 胞嘧啶之氣相超快激發態動態學研究:激發態衰減時間與激發能量的依存性, in 化學系. 2008, 國立清華大學: 新竹市. p. 106.
    51. 陳依微, 酚-氨陽離子錯合物中之超快質子轉移反應動態學研究, in 化學系. 2011, 國立清華大學: 新竹市. p. 91.
    52. 何智偉, 氣相飛秒化學反應動態學研究1.二甲基亞碸之超快三體光解反應動態學2.偶氮苯陽離子在異構化途徑之同調振動, in 化學系. 2008, 國立清華大學: 新竹市. p. 226.
    53. Eldredge, B.A.A.P., General Chemistry: Principles, Patterns, and Applications, v. 1.0 (2 Volume Set).
    54. Smalley, R.E., L. Wharton, and D.H. Levy, Acc. Chem. Res. 10, 139 (1977)
    55. Wiley, W.C. and I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955)
    56. Armentano, A., M. Riese, M. Taherkhani, M. Ben Yezzar, K. Muller-Dethlefs, M. Fujii, and O. Dopfer, J. Phys. Chem. A 114, 11139 (2010)
    57. J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, 128, 084106
    58. Y.K. Kang, H.S. Park, Journal of Molecular Structure (Theochem) 676 (2004) 171–176
    59. M. Albrecht, C. A. Rice and M. A. Suhm, J. Phys. Chem. A, 2008, 112, 7530–7542
    60. S. Shin, A. Kurawaki, Y. Hamada, K. Shinya, K. Ohno, A. Tohara and M. Sato, J. Mol. Struct., 2006, 791, 30–40.
    61. S. Ataka, H. Takeuchi and M. Tasumi, J. Mol. Struct., 1984, 113, 147–160.
    62. H. E. Hallam and C. M. Jones, Trans. Faraday Soc., 1969, 65, 2607–2610.
    63. M. Kitano and K. Kuchitsu, Bull. Chem. Soc. Jpn., 1974, 47, 631–634.
    64. T. Miyazawa, J. Mol. Spectrosc., 1960, 4, 155–167.
    65. Anastassios N. Troganis, Emilia Sicilia, Klimentini Barbarossou,Ioannis P. Gerothanassis, and Nino Russo, J. Phys. Chem. A, Vol. 109, No. 51, 2005 11879
    66. M. Saldyka, Z. Mielke, K. Mierzwicki, S. Coussanb and P. Roubinb, Phys. Chem. Chem. Phys., 2011, 13, 13992–14002
    67. A. Radzicka, L. Pedersen, R. Wolfenden, Biochemistry 27 (1988)4538.
    68. M. Malathi, R. Sabesan and S. Krishnan, CURRENT SCIENCE, VOL. 86, NO. 6, 25 MARCH 2004
    69. Walther Caminati, z Juan Carlos Lo´ pez, Susana Blanco, Santiago Mata andJose` Luis Alonso, Phys. Chem. Chem. Phys., 2010, 12, 10230–10234
    70. T. Bare, and W.L. Hase, "Unimolecular Reaction Dynamics: Theory and Experiment, " New York :Oxford University Press, 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE