簡易檢索 / 詳目顯示

研究生: 石志聰
Shih, Chih-T'sung
論文名稱: 矽微環型元件設計與分析
Design and Analysis of Silicon-based Microring Devices
指導教授: 趙煦
Chao, Shiuh
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 115
中文關鍵詞: 微環型矽光學光調制器波長交錯器
外文關鍵詞: Microring, Silicon photonics, Optical Modulator, Wavelength Interleaver
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今,由於以矽為基板的微環形元件因為其小尺寸、可因應各式各樣的應用、具有量產的能力,以及可在現存的互補金屬氧化半導體(CMOS)基礎製程機台上製作的潛力,使得此元件正吸引許多研究工作的注意;因此,在分析三維高折射率比(HIC)的彎曲波導與元件時,具嚴謹而又有效率的數值方法,其需求與日俱增。
    這篇論文的主題主要是開發一連串嚴格且有效率的數值方法,並用這些方法去分析三維具高折射率的彎曲波導、半圓耦合器(half-ring coupler)、全環形波長交錯器(all-microing interleaver)以及特別分析以矽為基板具有金屬氧化半導體橫截面之高速微環型電光調變器。藉由等效折射率法(EIM)、保角轉換(conformation transformation)以及光束傳遞法(BPM)我們提出一方法用來解一彎曲肋形(rib)介電波導的相似橫向電場模態(TE-like modes)。彎曲損失、傳遞常數和模態電場的徑向分佈可以得到。藉由應用有限差分時域法(FDTD)模擬工具,我們也可以得到S矩陣的參數用來精確地描述同向耦合器(co-direction)與半圓耦合器(half-ring coupler)。此外,以S矩陣為基礎,我們可以得到單臂(single-arm)和雙臂(double-arm)微環形共振腔的穿透(through)與取出(drop)光譜。以上述的方法為基礎,對於全環形波長交錯器與半圓耦合器的許多新
    穎觀念被提出,且最重要的是,我們提供對於互補金屬氧化半導體製程相容與以矽為基板之具有金屬氧化半導體橫截面的高速微環型電光調變器的完整電光特性分析。對於半圓耦合器和全環形波長交錯器:首先,我們發現在半圓耦合器中只要適當地選擇間隙寬度,其輸入(input)電場與穿透(through)或者是擷取(drop)電場可以有pi相位的跳躍現象;第二,將此相位跳躍的現象應用在單臂(single-arm)與雙臂(double-arm)微環形元件上,其穿透與擷取端的頻譜相對於與無此相位跳躍現象的穿透與擷取端的頻譜會位移一半的自由頻譜範圍(FSR);第三,利用這一半自由頻譜範圍的位移,我們提出第一個新穎的全環形波長交錯器,且我們在數值上驗證此概念;為了得到比較寬的3 dB 頻寬,比較高的串音(cross-talk)以及比較低的插入損失(IL),二階全環形波長交錯器也被提出並且在數值上被驗證。
    對於具有金屬氧化半導體電容結構的電光微環型光調變器:我們目標是利用自由載子效應在一個具有金屬氧化半導體橫截面的微環型調變器用以達到高速的電光調變;首先,為了最佳化橫截面尺寸,我們提出一容易理解的優化程序用以達到容易耦光、單模條件、傳播常數匹配、忽略彎曲損失以及進而達到最大化自由載子色散效應的需求;第二,利用上述的方法與二維的MEDICI模擬工具與藉由自由載子色
    散效應,我們針對一具有金屬氧化半導體結構的單臂微環形光調變器,在矽、二氧化矽與絕緣體(SOI)的晶片上,提出嚴格又廣泛的電性與光性分析。我們針對調變器之SPC的p型多晶矽半導體與n型單晶矽在各個不同的參雜濃度下,操作在3.3伏特電壓下之調變速度、操作功率與插入損失作分析。對於p型多晶矽半導體與n型單晶矽半導
    體的參雜濃度皆為3×1018 cm−3下,調變器操作在74 GHz的調變速度下,切換一次所需4.6×10−2 pJ/cm2的操作功率可以達到。對於40 GHz的操作,在SPC的p型多晶矽半導體,10-12 dB的插入損失可以達到,且在退火良好的p型多晶矽半導體,意即沒有光學損失的p型多晶矽半導體,9 dB的插入損失可以達到;第三,在此調變器上,為
    了達到理論上無窮大的消光比(ER),臨界耦合(critical coupling)的設計被應用上;然而,由於臨界耦合條件對於許多因素非常敏感,例如:在耦合區附近,bus與微環形波導間的不完美造成間隙寬度之製成誤差、MOS微環形器的溫度漂移(drifting)以及光源的波長漂移;因此,針對這些變化與漂移所造成的臨界耦合的容許誤差,我們做廣泛地分析與討論;第四,藉由應用自由載子色散效應,我們數值上展示這些變化與漂移錯誤是可以被補償至某種程度。為了盡可能地讓這些變化與漂移錯誤使得消光比的下降降低;第五,我們以這些變化與漂移錯誤分析與補償為基礎,針對MOS電容單臂微環型光調變器提出一操作方法。


    Contents Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii List of Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . xvii 1 Overview of silicon-based microring devices . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Review of silicon-based microring devices . . . . . . . . . . . . . . . 8 1.2.1 Microring filter . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 High-speed microring optical modulator . . . . . . . . . . . 10 1.3 Outline of dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Numerical methods for analyzing microring resonator . . . . . . . . . 14 2.1 Numerical analysis method for analyzing mode characteristics of bent waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Theory and method . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2.1 Simplified Helmholtz Equation in Cylindrical Co- ordinates for the TE-like Mode . . . . . . . . . . . 15 2.1.2.2 Effective Index Method and the Conformal Trans- formation for the TE-like Modes in Circularly Bent Waveguide . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2.2.1 Effective Index Method . . . . . . . . . . 19 2.1.2.2.2 Conformal Transformation . . . . . . . . . 19 2.1.2.2.3 Mode Solving . . . . . . . . . . . . . . . . 20 2.1.2.2.4 Electric Field Distribution . . . . . . . . . 23 2.1.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . 24 2.1.3.1 Bending Loss . . . . . . . . . . . . . . . . . . . . . 25 2.1.3.2 Mode refractive index for bent rib waveguide . . . 26 2.1.3.3 Electric field distribution of the TE-like mode . . . 27 2.1.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . 28 2.2 Numerical analysis for half-ring coupler and microring resonator . . 29 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.2 Coupled mode theory . . . . . . . . . . . . . . . . . . . . . . 30 2.2.3 Phase jump phenomenon for half-ring coupler . . . . . . . . 33 2.2.4 Analytical expressions for the through and the drop spectra of single-arm and double-arm microring resonator . . . . . . 39 2.2.4.1 Analytical expressions for the through and the drop spectra of a single-arm based on the S-matrix method 39 2.2.4.2 Analytical expressions for the through and the drop spectra of a double-arm microring resonator based on the S-matrix method . . . . . . . . . . . . . . . 40 2.2.4.3 Numerical examples . . . . . . . . . . . . . . . . . 43 2.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3 Design and analysis of MOS-capacitor single-arm microring optical mod- ulator with SPC poly-silicon gate. . . . . . . . . . . . . . . . . . . . 46 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 The optical design of the bent rib waveguide with MOS-capacitor cross-section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.1 Single-mode design . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.2 Minimizing the bending loss . . . . . . . . . . . . . . . . . . 51 3.2.3 Position of the fundamental TE-like mode . . . . . . . . . . 52 3.2.4 Result of the optical design . . . . . . . . . . . . . . . . . . 52 3.3 Optoelectronic simulation methods and results . . . . . . . . . . . . 54 3.3.1 Electrical simulation method . . . . . . . . . . . . . . . . . . 54 3.3.2 Optical simulation method . . . . . . . . . . . . . . . . . . . 55 3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.3.1 Electrical simulation . . . . . . . . . . . . . . . . . 57 3.3.3.1.1 Free-carrier distribution . . . . . . . . . . 57 3.3.3.1.2 Modulation speed . . . . . . . . . . . . . . 57 3.3.3.1.3 Operating power . . . . . . . . . . . . . . 61 3.3.3.2 Optical simulation . . . . . . . . . . . . . . . . . . 62 3.3.3.2.1 Mode analysis . . . . . . . . . . . . . . . . 62 3.3.3.2.2 Transmittance spectrum analysis . . . . . 66 3.3.3.2.3 Insertion loss analysis . . . . . . . . . . . 67 3.4 Critical coupling tolerance analysis . . . . . . . . . . . . . . . . . . 70 3.4.1 Tolerance on gap width . . . . . . . . . . . . . . . . . . . . . 70 3.4.2 Tolerance on temperature drifting of the microring . . . . . 72 3.4.3 Tolerance on wavelength drifting of the lightsource . . . . . 73 3.4.4 Combined the temperature drifting effect of the microring and the lightsource . . . . . . . . . . . . . . . . . . . . . . . 75 3.5 Active critical coupling control by free-carrier absorption . . . . . . 79 3.5.1 Theory and method . . . . . . . . . . . . . . . . . . . . . . . 79 3.5.2 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . 80 3.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.6 Extinction ratio compensation by free-carrier injection under tem- perature drifting of MOS microring . . . . . . . . . . . . . . . . . . 82 3.7 Operation methodology for the MOS modulator . . . . . . . . . . . 85 3.8 Comparison between the MOS microring modulator (MR) and the MOS Mach-Zehnder interferometric modulator (MZ) . . . . . . . . 89 3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4 All-microring wavelength interleaver . . . . . . . . . . . . . . . . . 94 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.2 Spectral shift by half-spectral-range for microring resonator employ- ing the phase jump phenomenon in coupled waveguides . . . . . . . 95 4.3 Design and analysis of microring wavelength interleaves . . . . . . . 99 4.3.1 Design concept . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.3.2 Second-order all-microring wavelength interleaver . . . . . . 100 5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

    [1] L. Pavesi, “Will silicon be the photonic material of the third millennium,”J. Phy.: Condens. Matter 15, 1169-1196 (2003).
    [2] S. K. Moore, “Linking with light,” IEEE Spectrum 39, 32-36 (2002).
    [3] C. Gunn, “CMOS Photonics for High-Speed Interconnects,” IEEE Micro 26,58-66 (2006).
    [4] Intel, 2010, Light Peak Overview: Bringing Optical to the Main-stream [Online]. Available: http://techresearch.intel.com/UserFiles/en-
    us/File/OpticalIO/LightPeakOverviewSlides-v010710.pdf.
    [5] J. X. Lee, “ITRI OI technologies developments,” Conference on opportuni-ties for PCB OI industry, Aug., 2007, Hsinchu, Taiwan.
    [6] I. O’Connor, F. T. Drissi, D. Navarro, F. Mieyeville, F. Gaffiot, J. Dambre,M. de Wilde, D. Stroobandt, and M. Briere, “Integrated optical interconnect for on-chip data transport,” IEEE North-East Workshop on Circuits and Sys-
    tems, 209-209 (2006).
    [7] R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J.Quantum Electron. 23, 123–129 (1987).
    [8] P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
    [9] P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Integrated optical directional couplers in silicon-on-insulator,” Electron. Lett. 31, 2097–2098 (1995).
    [10] C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, “Electrooptic Modulation of Silicon-on-Insulator Submicrometer-Size Waveguide Devices, IEEE J. Lightw. Technol. 21, 2332-2339 (2003).
    [11] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nico-laescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
    [12] G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “High-Speed Germanium-on-SOI Lateral PIN Photodiodes,” IEEE Photon. Technol. Lett. 16, 2547-2549 (2004).
    [13] H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725-728 (2005).
    [14] L. Liao, D. S.-Rubio, M. Morse, A. Liu, and D. Hodge, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129-3135 (2005).
    [15] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [16] M. Jutzi, M. Berroth G.Wöhl, M. Oehme, and E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth,”IEEE Photon. Technol. Lett.17, 1510-1512 (2005).
    [17] A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt.Express 14, 9203-9210 (2006).
    [18] R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. F.-Pedersen, L. H. Frandsen,O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret,B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,”Nature 441, 199-202 (2006).
    [19] L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N.Izhaky and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, (2007).
    [20] Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling,D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/sili-
    con avalanche photodiodes with 340 GHz gain–bandwidth product,” Nature Photon. 3, 59-63 (2008).
    [21] C. K. Madsen and J. H. Zhao, Optical filter design and analysis: a signal processing approach (John Willey & Sons Inc., 1999), pp. 237-303.
    [22] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightw. Technol. 15, 998-1005 (1997).
    [23] B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, andW. Greene, “Ultra-compact Si–SiO2 Microring resonator optical channel dropping filters,” IEEE Photon. Technol.
    Lett. 10, 549-551 (1998).
    [24] B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F.Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16,2263-2265 (2004).
    [25] M. A. Popovic, C.Manolatou, andM. R.Watts, “Coupled-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14,1208–1222 (2006).
    [26] T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I.Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” IEEE J. Lightw. Technol. 24, 2207-2218 (2006).
    [27] A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz,“Asymmetrically coupled silicon-on-insulator microring resonators for compact add–drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921-923(2003).
    [28] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout,D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets,“Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
    [29] S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm,” IEEE J. Lightw.Technol. 26, 228-236 (2008).
    [30] S. Xiao, M. H. Khan, H. Shen and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14765-14771 (2007).
    [31] K. Preston, B. Schmidt, and M. Lipson, “Polysilicon photonic resonators for large-scale 3D integration of optical networks,” Opt. Express 15, 17283-17290
    (2007).
    [32] S. A. Clark, B. Culshaw, E. J. C. Dawney, and I. E. Day, “Thermo-optic phase modulators in SIMOX material,” in Proc. SPIE, Jan. 2000, vol. 3936, pp. 16–24.
    [33] R. D. Kekatpure, M. L. Brongersma, and R. S. Shenoy, “Design of a silicon-based field-effect electro-optic modulator with enhanced light–charge interaction,” Opt. Lett. 30, 2149-2151 (2005).
    [34] L. Zhou, and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14, 6851-6857.
    [35] C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26,58-66 (2006).
    [36] G. Masini, G. Capellini, J. Witzens, and C. Gunn, “A 1550 nm, 10 Gbps optical modulator with integrated driver in 130 nm CMOS,” 2007 4th IEEE International Conference on Group IV Photonics, 186-188 (2007).
    [37] Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” Lasers and Electro-Optics Society (LEOS), 537-538 (2007).
    [38] S. Manipatruni, Q. Xu, M. Lipson, “PINIP based high-speed high-extinction ratio micron-size silicon electro-optic modulator,” Opt. Express 15, 13035-13042 (2007).
    [39] W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact,low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15,17106-17113 (2007).
    [40] S. J. Spector, M. W. Geis, G.-R.Zhou, M. E. Grein, F. Gan, M. A. Popovi,J. U. Yoon, D. M. Lennon, E. P. Ippen, F. X. Kärtner, and T. M. Lyszczarz,“CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express 16, 11027-11031 (2008).
    [41] D. M.-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval,“Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334-339 (2008).
    [42] H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” Opt. Express 16, 20571-20576 (2008).
    [43] Z.-Y. Li, D.-X. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben,and J.-Z. Yu, “Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions,” Opt. Express 17, 15947-15958 (2009).
    [44] J. W. Park, J.-B. You, I. G. Kim, and G. Kim, “High-modulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a PN diode,” Opt. Express 17, 15520-15524 (2009).
    [45] C. T. Shih, Z. W. Zeng, and S. Chao, “Design and analysis of metal-oxide- semiconductor–capacitor microring optical modulator with solid-phase-crystallization poly-silicon gate,” IEEE J. Lightw. Technol. 27, 3861-3873
    (2009).
    [46] P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W.Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp,ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt.Express 17, 22484-22490 (2009).
    [47] F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. M.-Morini, L.O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17, 21986-21991 (2009).
    [48] BeamPROPTM 8.1 User Guide (RSoft Design Group, Inc., 2009).
    [49] FullWAVETM 6.1 User Guide (RSoft Design Group, Inc., 2009).
    [50] J. D. Schaub, R. Li, S. M. Csutak, and J. C. Campbell, “High-speed monolithic silicon photoreceivers on high resistivity and SOI substrates,” J. Lightwave Technol. 19, 272–278 (2001).
    [51] H. Deng, G. H. Jin, J. Harari, J. P. Vilcot, and D. Decoster, “Investigation of 3-D semivectorial finite-difference beam propagation method for bent waveguides,” J. Lightwave Technol. 16, 915–922 (1998).
    [52] R. T. Schermer, “Mode scalability in bent optical fibres,” Opt. Express 15,15674–15701 (2007).
    [53] M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11, 75–83 (1975).
    [54] E. C.M. Pennings and R. J. Deri,“Simple method for estimating usable bend radii of deeply etched optical rib waveguides,” Electron. Lett. 27, 1532–1534
    (1991).
    [55] L. H. Spiekman, Y. S. Oei, E. G. Metaal, F. H. Groen, P. Demeester, and M.
    K. Smit, “Ultrasmall waveguide bends: the corner mirrors of the future?,”
    IEE Proc.: Optoelectron. 142, 61–65 (1995).
    [56] W. Berglund and A. Gopinath, “WKB analysis of bend losses in optical waveguides,” J. Lightwave Technol. 18, 1161–1166 (2000).
    [57] R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, 1991), Chap. 3.
    [58] R. M. Knox and P. P. Toulios, “Integrated circuits for millimeter through optical frequency range,”in Symposium on Submillimeter Waves (Polytechnic Institute of Brooklyn, 1970), pp. 497–516.
    [59] T. Tamir, Integrated Optics (Springer-Verlag, 1975), Chap. 2.
    [60] C. R. Pollock and M. Lipson, Integrated Photonics (Kluwer Academic, 2003),Chap. 8.
    [61] S. Jungling and J. C. Chen, “A study and optimization of eigenmode calculations using imaginary-distance beam propagation method,”IEEE J. Quantum Electron. QE-30, 2098–2105 (1994).
    [62] M. D. Feit and J. A. Fleck, “Computation of mode properties in optical fiber waveguides by a propagation beam method,” Appl. Opt. 19, 1154–1164 (1980).
    [63] J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,”J. Opt. Soc. Am. A 1, 742–753 (1984).
    [64] M. C. M. Lee and M. C.Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14, 4703–4712 (2006).
    [65] A. Yariv and P. Yeh, Photonics:optical electronics in modern communications(Oxford University Press Inc., 2007), pp. 184-189.
    [66] M. A. Popovic, C.Manolatou, andM. R.Watts, “Coupled-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14,1208–1222 (2006).
    [67] S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Effect of a layered environment on the complex nature frequencies of two-dimensional WGM dieletric-ring resonators,” IEEE J. Lightwave Technol. 20, 1563–1572 (2002).
    [68] O. Schwelb, “On the nature of resonance splitting in coupled multiring optical resonators,” Opt. Commun. 281, 1065–1071 (2008).
    [69] T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P.Ippen, and H. I. Smith, “Microringresonator-based add-drop filters in SiN:fabrication and analysis,” Opt. Express 12, 1437–1442 (2004).
    [70] C. K. Okamoto, Fundamentals of OpticalWaveguides (Academic Press, 2000),Chap. 4.
    [71] Adamant Kogyo co., ltd, 2010, [Online]. Available: http://www.adamantkogyo.com/products/fiber-optic-components/pdf/LensedFiber.pdf.
    [72] S. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,”IEEE J. Lightw. Technol. 16, 1851-1853 (1998).
    [73] S. M. Sze, “Dielectric and polysilicon film deposition,” in VLSI Technology,(New York: McGraw-Hill, 1988), pp. 233–271.
    [74] M. Takabatake, J. I. Ohwada, Y. A. Ono, K. Ono, A. Mimura, and N. Konishi, “CMOS circuits for peripheral circuit integrated poly-Si TFT LCD fabricated at low temperature below 600 0C,” IEEE Trans. Electron Devices 38,1303–1309 (1991).
    [75] S. W. Lee, T. H. Ihn, and S. K. Joo, “Fabrication of high-mobility p-channel poly-Si thin film transistors by self-aligned metal-induced lateral crystallization,” IEEE Electron Device Lett. 17, 407–409 (1996).
    [76] J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett. 68, 2052–2054 (1996).
    [77] L. Liao, “Low Loss Polysilicon Waveguides for Silicon Photonics,” M.S.thesis, Dept. Materials Sci. and Eng., Massachusetts Institute of Technology,Cambridge, MA (1997).
    [78] A. M. Ghosh, C. Fishman, and T. Feng, “Theory of the electrical and photovoltaic properties of polycrystalline silicon,” J. Appl. Phys., 51, 446–454,(1980).
    [79] D. R. Lim, “Device Integration for Silicon Microphotonic Platforms,”Ph.D.dissertation, Dept. Elect. Eng. and Comput. Sci., Massachusetts Institute of Technology, Cambridge, MA (2000).
    [80] R. S. Muller and T. I. Kamins, “Currents in pn junctions,” in Device Electronics for Integrated Circuits, (New York: Wiley, 1986), pp. 218–269.
    [81] T. J. King and K. C. Saraswat, “Low-temperature (550 0C) fabrication of poly-Si thin-film transistors,” IEEE Electron Devices Lett., 13, 309–311(1992).
    [82] J. Sune, P. Olivo, and B. Ricco, “Quantum-mechanical modeling of accumulation layers in MOS structure,” IEEE Trans. Electron Devices, 39,1732–1739 (1992).
    [83] L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288–290 (1982).
    [84] G. P. Agrawal, “Lightwave systems,” in Fiber-Optic Communication Systems, (New York: Wiley, 2002), pp. 193–195.
    [85] L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling,“Optical transmission losses in polycrystalline silicon strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and
    wavelength,” J. Electron. Mater. 29, 1380–1386 (2000).
    [86] K. Okamoto, “Planar optical waveguides,” in Fundamentals of Optical
    Waveguides, (San Diego: Academic Press, 2000), pp. 13–45.
    [87] International Technology Roadmap for Semiconduc-
    tors, 2004, 2004 Update Lithography [Online]. Available:
    http://www.itrs.net/Links/2004Update/2004 -07 -Lithography.pdf.
    [88] International Technology Roadmap for Semiconductors, 2004, 2004 Update Front End Process [Online]. Available: http://www.itrs.net/Links/2004Update/2004 -06 -FEP.pdf.
    [89] S. A. Clark, B. Culshaw, E. J. C. Dawney, and I. E. Day,“Thermo-opticphase modulators in SIMOX material,” Proc. SPIE 3936, 16–24 (2000).
    [90] Cyoptics Inc., 2008, Edge-Emitting DFB Laser Diode Chip at1550 nm and DWDM Wavelengths for Use in Cooled CW Applications [Online]. Available: http://www.cyoptics.com/dynContent-Folder/DS-295M.pdf.
    [91] A. Liu, D. S.-Rubio, L. Liao, and M. Paniccia, ”Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,” IEEE J. Sel. Topics Quantum Electron. 11, 367-372 (2005).
    [92] S. Cao, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li,
    S. Suzuki, K. Y. Wu, and P. Xie,“Interleaver technology: comparisons and applications requirements,” IEEE J. Lightw. Technol. 22, 281–289 (2004).
    [93] C. K. Madsen and J. H. Zhao, Optical filter design and analysis: a signal processing approach (John Willey & Sons Inc., 1999), pp. 165-177.
    [94] T. Mizuno, T. Kitoh, M. Oguma, Y. Inoue, T. Shibata and H. Takahashi, “Uniform wavelength spacing Mach-Zehnder interference using phase-generating couplers,” IEEE J. Lightw. Technol. 24, 3217–3226 (2006).
    [95] K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” IEEE J. Lightwave Technol. 6, 1016–1023 (1988).
    [96] M. Kohtoku, S. Oku, Y. Kadota, and Y. Yoshikuni, “200-GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interference with a ring resonator,” IEEE Photon. Technol.Lett. 12, 1174–1176 (2000).
    [97] Z. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19, 1072–1074 (2007).
    [98] J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive
    ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express 16, 8359–8365 (2008).
    [99] M. A. Popovic, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen,
    F. X. Kartner, and H. I. Smith, “Multistage high-order microring-resonator add-drop filters,” Opt. Lett. 31, 2571–2573 (2006).
    [100] National Nano Devices Laboratories (NDL), 2000, Elec-
    tron e-beam lithography system, [Online]. Available:
    http://www.ndl.org.tw/cht/ndlcomm/P7 2/36.htm.
    [101] Y. C. Chang, “Analysis on characteristics of silicon rib waveguide and microring resonator,” M.S. thesis, Institute Photon. Technologies, National Ts-ing Hua University, Hsinchu, Taiwan, R.O.C. (2008).
    [102] G. T. Reed, and A. P. Knights, Silicon Photonics: An introduction (John Wiley & Sons, Ltd, 2004), pp. 92-93.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE